Большая Советская Энциклопедия (ЗЕ)
Шрифт:
Практические применения явлений З. м. Под действием геомагнитного поля магнитная стрелка располагается в плоскости магнитного меридиана. Это явление с древнейших времён используется для ориентирования на местности, прокладывания курса судов в открытом море, в геодезической и маркшейдерской практике, в военном деле и т.д. (см. Компас, Буссоль).
Исследование локальных магнитных аномалий позволяет обнаружить полезные ископаемые, в первую очередь железную руду (см. Магнитная разведка), а в комплексе с др. геофизическими методами разведки — определить место их залегания и запасы. Широкое распространение получил магнитотеллурический
Одним из источников сведений о верхних слоях атмосферы служат геомагнитные вариации. Магнитные возмущения, связанные, например, с магнитной бурей, наступают на несколько часов раньше, чем под её воздействием происходят изменения в ионосфере, нарушающие радиосвязь. Это позволяет делать магнитные прогнозы, необходимые для обеспечения бесперебойной радиосвязи (прогнозы «радиопогоды»). Геомагнитные данные служат также для прогноза радиационной обстановки в околоземном пространстве при космических полётах.
Постоянство геомагнитного поля до высот в несколько радиусов Земли используется для ориентации и маневра космических аппаратов.
Геомагнитное поле воздействует на живые организмы, растительный мир и человека. Например, в периоды магнитных бурь увеличивается количество сердечно-сосудистых заболеваний, ухудшается состояние больных, страдающих гипертонией, и т.д. Изучение характера электромагнитного воздействия на живые организмы представляет собой одно из новых и перспективных направлений биологии.
А. Д. Шевнин.
Лит.: Яновский Б. М., Земной магнетизм, т. 1—2, Л., 1963—64; его же, Развитие работ по геомагнетизму в СССР за годы Советской власти. «Изв. АН СССР, Физика Земли», 1967, № 11, с. 54; Справочник по переменному магнитному полю СССР, Л., 1954; Околоземное космическое пространство. Справочные данные, пер. с англ., М., 1966; Настоящее и прошлое магнитного поля Земли, М., 1965; Брагинский С. И., Об основах теории гидромагнитного динамо Земли, «Геомагнетизм и аэрономия»,1967, т.7, № 3, с. 401; Солнечно-земная физика, М., 1968.
Рис. 4. Магнитограмма, на которой зафиксирована малая магнитная буря: Н, D, Z — начало отсчёта соответствующей составляющей земного магнетизма; стрелками показано направление отсчёта.
Рис. 2. Карта полной напряжённости геомагнитного поля (в эрстедах) для эпохи 1965 г.; чёрные кружочки — магнитные полюсы (М. П.). На карте указаны мировые магнитные аномалии: Бразильская (Б. А.) и Восточно-Сибирская (В.-С. А.).
Строение магнитосферы Земли.
Рис. 1. Элементы земного магнетизма.
Рис. 3. Схема магнитных полей в гидромагнитном динамо Земли: NS — ось вращения Земли: Вр — поле, близкое к полю диполя, направленного вдоль оси вращения Земли; Bj — тороидальное поле (порядка сотен гаусс), замыкавщееся внутри земного ядра.
Земной сфероид
Земно'й сферо'ид (от
Отступление сфероида или эллипсоида от точного шара применительно к любой планете, в том числе и к Земле, характеризуется её полярным сжатием a, которое определяется теорией французского математика А. Клеро (1743) и равно
где а и b — экваториальный и полярный радиусы, ge и gp — ускорение силы тяжести на экваторе и полюсе и w — угловая скорость вращения планеты около неизменной оси (см. Гравитационное поле Земли).
Лит.: Михайлов А. А., Курс гравиметрии и теории фигуры Земли, 2 изд., М., 1939.
А. А. Изотов.
Земной эллипсоид
Земно'й эллипсо'ид,эллипсоидвращения, наилучшим образом представляющий фигуру геоида, т. е. фигуру Земли в целом. Для наилучшего представления геоида в пределах всей Земли обычно вводят общий З. э. и определяют его так, чтобы: 1) объём его был равен объёму геоида, 2) плоскость экватора и малая ось его совпадали соответственно с плоскостью экватора и осью вращения Земли и 3) сумма квадратов отступлений геоида от общего З. э. по всему земному шару была наименьшей. Для наилучшего же представления фигуры геоида в пределах той или иной области земной поверхности применяют наиболее подходящий З. э. и определяют его так, чтобы: 1) сумма квадратов отклонений геоида в пределах этой области была наименьшей и 2) плоскость экватора и малая ось его были параллельны соответственно плоскости экватора и оси вращения Земли. Общий З. э. мало отличается от земного сфероида, представляющего соответствующую фигуру равновесия планеты.
Т. к. выяснено, что Земля сплюснута не только в направлении её полюсов, но и по её экватору, хотя и очень незначительно, то иногда в теоретических расчётах применяют эллипсоид с тремя неравными осями, наименьшая из которых совпадает с осью вращения Земли. Размеры З. э. и его положение в теле Земли определяют из градусных измерений, измерений силы тяжести и наблюдений искусственных спутников Земли (см. Спутниковая геодезия). Знание размеров З. э. Необходимо для научных и практических целей геодезии и картографии, а также для др. отраслей науки и техники. В геодезических и картографических работах СССР и др. социалистических стран принят Красовского эллипсоид.