Борьба за скорость
Шрифт:
Скачки на крыле удавалось фотографировать в полете. Они отбрасывали тени на освещенное солнечным светом крыло. Их можно было также сфотографировать аппаратами, похожими на те, какие применяются в аэродинамических трубах. Так самолет, подобно аэродинамической трубе, служил для изучения скачков, появляющихся при больших скоростях.
Эти «пассажиры», которые неизбежно садятся на отдельные части самолета, дорого обходятся.
Раз так, нужно уменьшить, ослабить их вредное влияние.
Нельзя было долго терпеть, чтобы новый двигатель стоял на самолетах старых форм, на
И появились новые — реактивные — самолеты. Появилась и новая отрасль науки — аэродинамика больших скоростей, основы которой заложил академик С. А. Чаплыгин еще в 1900 году.
В начале века он создал теорию, которую лишь теперь, с наступлением эпохи больших скоростей, можно полностью оценить. Когда в 1936 году в Риме собрался конгресс по большим скоростям в авиации, он признал лучшей работу Чаплыгина «О газовых струях», написанную 36 лет до этого.
На основе исследований Чаплыгина и других советских ученых — его учеников и последователей — аэродинамики с новой силой развернули борьбу за скорость.
Современный реактивный самолет.
Расчеты и опыты в аэродинамических трубах больших скоростей показали, что профиль крыла скоростного самолета должен быть иным, чем у самолета малых и средних скоростей.
Он должен быть тоньше, с более острым носком, с меньшей кривизной. Тогда и неприятности, связанные с появлением «местных» звуковых скоростей, отдаляются, отодвигаются. То же относится и к фюзеляжу.
Оказывается, самолет-капля не всегда идеал. Это идеал до известного предела. Ему на смену приходит новый самолет, самолет-веретено.
Расчеты и опыты показали, что есть и другой путь для того, чтобы отдалить появление скачков. Этот путь — стреловидные крылья и оперение. И старому самолету приходит на смену новый — с крыльями отогнутыми, как у ласточки в стремительном полете.
Выбирая форму скоростного самолета, приходится многое иметь в виду.
Неудачно расположена моторная гондола — и опасность появления скачка тут как тут. Неудачно расположили вертикальное оперение по отношению к горизонтальному — и жди неприятностей.
Надо позаботиться и о том, чтобы оперение не попало в струю газов из реактивных двигателей, расположенных в крыльях, и его поднимают выше, чем у обычных самолетов.
Возникают и новые трудности для конструктора.
Нужны тонкие крылья и фюзеляж, — говорит ученый-аэродинамик.
Но не забывайте о прочности, — напоминает инженер-прочнист.
А моторостроитель требует предусмотреть побольше места для горючего — его ведь реактивному двигателю нужно больше, чем поршневому. Нельзя забыть и про пассажиров, про грузы.
От одной неприятности избавились, вернее отдалили ее, другая появилась. И приходится изыскивать не только новые формы, но и новые конструкции частей самолета, еще тщательнее отделывать поверхности, находящиеся
В тонком крыле трудно разместить тот каркас, к которому крепится обшивка. Эту «начинку» делают более простой. На одном самолете, например, вместо сложного каркаса применили заполнитель из очень легкого материала, а обшивку сделали фанерную. Думают и о крыльях литых и откованных из металла.
В тонком крыле бывает подчас трудно запрятать шасси. Тогда делают специальные гнезда в фюзеляже для уборки колес.
Шасси на реактивном самолете обычно устраивают трехколесное. Оно удобнее двухколесного. Однако и с ним не все сразу стало гладко.
Самолет разбегается перед взлетом. И вдруг носовое колесо начинает прыгать из стороны в сторону, как бы выплясывая какой-то танец. Это явление, кстати, и получило название танца «шимми».
Задачу борьбы с «шимми» помог решить лауреат Сталинской премии академик М. В. Келдыш. Он вооружил конструкторов методами борьбы с колебаниями колес самолета.
Конструкторам пришлось по-новому решить и вопрос об управлении самолетом.
В нашем распоряжении есть и электромоторы и гидравлика. Нажал бы летчик на кнопки или открыл кран — и рули легко поворачиваются, если с ними не справишься одними мускулами. Есть же у нас целые машины, управляемые простым нажатием кнопки.
Но предложите летчикам такой самолет-полуавтомат: никто из них не согласится на нем летать!
Я должен чувствовать машину, — ответит вам летчик.
Отклоняя рули, он должен чувствовать усилие на ручке управления. Чем больше усилие, тем сильнее отклонится руль. Самолет «отвечает» летчику. А попробуйте почувствовать это, нажимая на кнопку! Мало ли, много ли отклонился руль, а нажим на кнопку одинаковый.
Конструкторы разделили труд между человеком и машиной. Самую тяжелую работу по отклонению рулей при большой скорости выполняет электромотор или жидкость под давлением, двигающая поршень с рычагом. На долю летчика остается небольшое усилие, меняющееся как и при обычном полете, когда летчик «чувствует» самолет.
Перед конструкторами машин больших скоростей стояла и другая очень важная задача.
Вот какой произошел однажды случай, о котором рассказывает инженер-подполковник Вишенков в книге о летчиках-испытателях.
Новая скоростная машина сначала вела себя прекрасно и оправдала все ожидания. Скорость ее была столь велика, что летчик не мог нарадоваться стальной птицей. Он поднимался на заданную высоту, переходил в горизонтальный полет, чтобы узнать, какую скорость может дать машина. Потом поднимался еще выше и снова мчался на полной скорости. Все шло хорошо.
И вдруг… когда самолет забрался повыше и рванулся вперед, его внезапно затрясло так, что штурвал выскочил у летчика из рук. Похоже было, что машина вот-вот рассыплется на куски… С трудом удалось ему утихомирить «взбунтовавшийся» самолет и посадить его на землю. Летчик вылез из кабины и замер от удивления. Гладкая, блестящая обшивка походила на бурное море: она покрылась волнами, вспучилась. Трещины и клочья обшивки виднелись тут и там, будто кто-то нарочно рубил машину топором.