Чтение онлайн

на главную - закладки

Жанры

Божественный Космос
Шрифт:

Также, ионная связь может возникать, когда отдельные атомы конкретного элемента притягиваются друг к другу и связываются вместе по двое, создавая симметрию. Самый очевидный пример — молекула кислорода, О2. Единственный способ, посредством которого древние (ал)химики могли находить исходные элементы, такие как единичный атом кислорода, — это разложение основных химических соединений посредством горения, замораживания, смешивания с кислотами и основаниями и так далее.

4.4 ЧАСТОТНЫЕ РАСШИРЕНИЯ И СЖАТИЯ

Итак, возвращаясь к основному положению: у нас есть восемь основных положений или фаз, в которых могут быть расположены тетраэдр и октаэдр. Однако любой проницательный читатель уже заметил, что восьми основных геометрических

положений явно недостаточно для формирования всей Периодической Таблицы; чтобы создать полный набор природных элементов, должны работать еще какие-то дополнительный свойства.

Рис. 4.5 Частотное расширение тетраэдра в октаэдр

Вот ключ:

Обе геометрические формы способны расширяться и сжиматься из своих центров.

Это называется изменением частоты.

Меняя частоту, они формируют разные виды геометрических твердых тел.

Эти твердые тела — не Платоновы, могут быть и другие формы, такие как твердые тела Архимеда, но все они связаны посредством “родительских” тетраэдра и октаэдра.

Как видно на рис. 4.5, сжатие геометрической формы — это деление всех ребер на две или более равных частей, а затем соединение полученных точек. Если мы делим каждое ребро на половины, это называется “второчастотное” деление, если мы делим каждое ребро на три равные части, такое деление называется “третье-частотное” деление. Начиная с тетраэдра, Бакминстер Фуллер продемонстрировал, что посредством процесса расширения или сжатия можно получить всего десять разных частот (геометрических форм), и это центральный аспект находок Джонсона. Например, известно, что “мощная” сила в атомном ядре в десять раз сильнее “слабой” силы в электронных облаках! Обычно это записывается как квадратный корень из 100, равный 10. Никакого иного правдоподобного объяснения этой аномалии не найдено. То есть, ядро представляет собой точку самой “свернутой” геометрии на самом высоком частотном уровне сжатия.

Итак, все, что нужно сделать, — это объединить восемь основных фаз вращающейся в противоположных направлениях геометрии с различными частотами геометрии, возникающей в результате расширения или сжатия. Таким способом можно получить всю Периодическую Таблицу. Кроме того, вы можете предсказать, будет ли элемент твердым, жидкостью или газом, а также, каковы будут его точки замерзания, плавления или испарения. Джонсон направляет заинтересованных мыслителей к работе Джеймса Картера, которому удалось получить всю Периодическую Таблицу посредством схем спиралевидного движения, которые он назвал “круглонами”. И самое интересное: “круглоны” Картера являются сферическими торами! Представляется, что Картер не знал, что спиралевидные, волнообразные, циклические “вращения во вращениях” и были тем, что он изображал между круглонами для демонстрации различных элементов, то есть, они существуют посредством “абсолютного движения”. В целях более полного описания, мы приглашаем читателя, ознакомиться с нашей детальной статьей и/или вебсайтом Картера. В целях упрощения, мы приведем некоторые наиболее очевидные признаки из квантовой физики, указывающие на работу Платоновых геометрий.

4.5 ПОСТОЯННАЯ ПЛАНКА И “КВАНТОВАННАЯ” ПРИРОДА СВЕТА

Большинство людей уже знает: считается, что тепловое излучение и свет создаются очень простой вещью — движением вспышек электромагнитной энергии, известных как “фотоны”. Однако до 1900 года считалось, что свет и тепло движутся не в форме дискретных (прерывистых) единиц “фотонов”, а гладко, плавно и неразрывно. Физик Макс Планк первым открыл, что на самом крошечном уровне свет и тепло движутся “пульсациями” или “пакетами” энергии, величиной 10– 32 см. По сравнению с таким размером атомное ядро было бы величиной с планету! Интересно следующее: чем быстрее колебание, тем больше пакеты, и, соответственно, чем медленнее колебание, тем меньше пакеты. Планк открыл, что отношение между скоростью колебания и размером пакета всегда остается постоянным, не зависимо от того, как

вы их измеряете. Постоянное отношение между скоростью колебания и размером пакета известно как Закон Распределения Вейна. Планк обнаружил единственное число, выражающее это отношение. Сейчас оно известно как “Постоянная Планка”.

Недавно опубликованная статья Каролин Хартман (декабрьский 2001 года выпуск журнала Наука и техника 21-го века) посвящена исключительно находкам Макса Планка. Она раскрывает, что головоломка, созданная его открытиями, остается нерешенной:

“Сегодня, в целях более глубокого проникновения в структуру атома, наш долг — продолжать исследования таких ученых как Кюри, Лиза Мейтнер и Отто Ган. Но фундаментальные вопросы: что вызывает движение электронов, подчиняется ли это движение определенным геометрическим законам, и почему одни элементы более устойчивы, чем другие, все еще не имеют ответов и ожидают новых передовых гипотез и идей”.

В этой книге мы уже можем видеть ответ на вопрос Хартман. Как мы уже сказали, открытия Планка совершались в результате изучения теплового излучения. Вводный параграф в статье Каролин Хартман — совершенное описание его достижений:

“Сто лет назад, 14 декабря 1900 года, физик Макс Планк (1858–1947) объявил (в речи перед Обществом Кайзера Вильгельма в Берлине) о своем открытии новой формулы излучения, которая могла бы описывать все закономерности, наблюдаемые при нагревании материи, когда она начинает испускать тепло разных цветов. Причем его новая формула основывалась на одном важном допущении: энергия излучения не непрерывна, излучение происходит только пакетами определенного размера. Трудность в том, как сделать стоящее за “формулой” допущение физически понятным. Что имеется в виду под “энергетическими пакетами”, которые даже не постоянны, а меняются пропорционально частоте колебания (Закон Распределения Вейна)?”

Немного позже, Хартман продолжает:

“(Планк) знал: когда бы вы ни наталкивались на, по-видимому, неразрешимую проблему в Природе, в ее основе должны лежать более сложные закономерности; иными словами, должна существовать иная “геометрия Вселенной”, чем считалось раньше. Например, Планк всегда настаивал на том, что надежность уравнений Максвелла следует пересмотреть, потому что физика достигла такой стадии своего развития, при которой так называемые “физические законы” больше не универсальны”.

Зерно работы Планка может быть выражено простым уравнением, описывающим, как излучающая материя высвобождает энергию в “пакетах” или вспышках. Это уравнение Е = hv, где Е — это конечная измеряемая энергия, v — частота вибрации излучения, высвобождающего энергию, и h — известна как “Константа Планка”, регулирующая “поток” между v и E.

Константа Планка равна 6,626. Это отвлеченное выражение, поскольку выражает чистое отношение между двумя величинами и не нуждается в присвоении любой конкретной категории измерения, иной, чем эта. Планк открыл эту константу не чудом, скорее он скрупулезно вывел ее посредством изучения многих разных видов теплового излучения.

Это первая главная тайна, которую проясняет Джонсон в своем исследовании. Он напоминает: для измерения константы Планка используется декартова (прямоугольная) система координат. Эта система названа по имени ее создателя Рене Декарта и означает, что для измерения трехмерного пространства используются кубы. Она стала настолько привычной, что большинство ученых даже не считают ее чем-то необычным, просто длина, ширина и высота. В экспериментах, таких как эксперименты Планка, для измерения энергии, движущейся через определенную область пространства, используется маленький куб. В измерительной системе Планка, в целях простоты, этому кубу был естественно присвоен объем “единицы” (1). Однако когда Планк писал свою константу, он не хотел иметь дело с десятичным числом, и поэтому сдвинул объем куба до 10. Это сделало константу равной 6,626 вместо 0,6626. По-настоящему важным было отношение между чем-то, находящимся внутри куба (6,626), и самим кубом (10). Не имеет значения, присваиваете ли вы кубу объем единицы, десяти или любого другого числа, поскольку отношение всегда остается постоянным. Как мы говорили, Планк разгадал постоянную природу этого отношения только посредством тщательных многолетних экспериментов.

Поделиться:
Популярные книги

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Вспомнить всё (сборник)

Дик Филип Киндред
Фантастика:
научная фантастика
6.00
рейтинг книги
Вспомнить всё (сборник)

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Тагу. Рассказы и повести

Чиковани Григол Самсонович
Проза:
советская классическая проза
5.00
рейтинг книги
Тагу. Рассказы и повести

Аристократ из прошлого тысячелетия

Еслер Андрей
3. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аристократ из прошлого тысячелетия

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

От Двуглавого Орла к красному знамени. Кн. 1

Краснов Петр Николаевич
Белая Россия
Проза:
русская классическая проза
6.80
рейтинг книги
От Двуглавого Орла к красному знамени. Кн. 1