Чтение онлайн

на главную - закладки

Жанры

Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Грин Брайан

Шрифт:

Шапере и Фенга происхождение сверхэнергичных частиц космических лучей заботило во вторую очередь. Они осознали, что безотносительно к тому, откуда взялись такие частицы, если гравитация на микроскопическом масштабе намного сильнее, чем некогда считалось, самые высокоэнергетические частицы космических лучей могут иметь вполне достаточно энергии, чтобы создать мельчайшие черные дыры, когда эти частицы яростно вторгаются в верхнюю атмосферу.

Как и с их производством в атомных ускорителях, такие мельчайшие черные дыры не будут представлять абсолютно никакой опасности для экспериментаторов или мира в целом. После их создания они быстро распадутся, послав вовне каскад других, более обыкновенных частиц. Фактически, микроскопические черные дыры будут настолько короткоживущими, что экспериментаторы не смогут найти их непосредственно; напротив, они будут искать доказательство черных дыр через детальные исследования результирующих частиц, дождем падающих на их детекторы. Самый чувствительный из детекторов космических лучей мира, обсерватория Пьера Аугера, –

вместе с наблюдающей областью размером порядка Род Айленда, – строится в настоящее время в обширной вытянутой местности в западной Аргентине. Шапере и Фенг оценивают, что если все внешние размерности имеют величину порядка 10–14 метра, тогда после года сбора данных детектор Аугера увидит характеристические обломки частиц от примерно дюжины мельчайших черных дыр, произведенных в верхней атмосфере. Если такие отметки черных дыр не будут найдены, эксперимент даст заключение, что внешние размерности еще меньше. Поиск остатков черных дыр, произведенных столкновениями космических лучей, определенно является рискованной ставкой, но успех открыл бы первое экспериментальное окно к дополнительным размерностям, черным дырам, теории струн и квантовой гравитации.

Вне производства черных дыр имеется другой, основанный на ускорителях путь, на котором исследователи могут искать внешние размерности в течение следующих десяти лет. Идея заключается в усложненном варианте трактовки "пространства-между-диванными-подушками" для потерянной монеты, выпавшей из вашего кармана.

Центральный принцип физики есть сохранение энергии. Энергия может проявлять себя в различных формах – кинетическая энергия движения мяча, когда он улетает от бейсбольной биты, гравитационная потенциальная энергия, когда мяч взлетел вверх, энергия звука и тепла, когда мяч падает на грунт и возбуждает все виды колебательного движения, энергия массы, которая замкнута внутри самого мяча, и так далее, – но когда все носители энергии оценены, количество, с которым вы закончите всегда равно количеству, с которым вы начали. [7] На сегодняшний день нет эксперимента, нарушающего этот закон совершенного энергетического баланса.

7. Подготовленный читатель обнаружит, что сохранение энергии в теории с динамическим пространством-временем это тонкая проблема. Определенно, тензор напряжений от всех источников для уравнений Эйнштейна ковариантно сохраняется. Но это не обязательно переносится на глобальный закон сохранения для энергии. И по хорошей причине. Тензор напряжений не учитывает гравитационной энергии – общеизвестно трудного понятия в ОТО. На достаточно коротких дистанциях и временных масштабах – таких, которые возникают в экспериментах на ускорителях, – локальное сохранение энергии применимо, но утверждения относительно глобального сохранения должны делаться с большей осторожностью.

Но в зависимости от точного размера гипотетических внешних измерений эксперименты с высокими энергиями, которые будут проводиться с вновь усовершенствованным оборудованием в Фермилабе и на Большом Адронном Коллайдере (LHC) могут обнаружить процессы, которые покажут нарушение сохранения энергии: энергия в конце столкновения может быть меньше, чем энергия в начале. Причина в том, что, почти похоже на потерянные монетки, энергия (уносимая гравитонами) может просачиваться в трещину – мельчайшее дополнительное пространство, – обеспеченную дополнительными измерениями и потому нечаянно упущенную при вычислениях оцениваемой энергии. Возможность такого "сигнала потери энергии" обеспечивает еще один способ для установления, что ткань космоса намного сложнее, чем мы можем видеть непосредственно.

Несомненно, когда речь заходит о дополнительных размерностях, я предубежден. Я работал над аспектами дополнительных размерностей более пятнадцати лет, так что они занимают особое место в моем сердце. Но, с этой верой, как описателю, мне тяжело представить открытие, которое было бы более завораживающим, чем находка доказательства измерений за пределами трех, к которым мы все привыкли. По моему мнению, в настоящее время нет другого серьезного предположения, чье подтверждение так основательно потрясет основы физики и так полно установит, что мы должны быть готовы к вопросам, относящимся к кажущимся самоочевидными элементам реальности.

Хиггс, суперсимметрия и теория струн

Помимо научных попыток поиска неизвестного и шансов нахождения доказательства дополнительных размерностей, имеется пара специфических мотивов для недавнего обновления ускорителя в Фермилабе и для строительства мамонта – Большого Адронного Коллайдера. Один заключается в поиске частиц Хиггса. Как мы обсуждали в Главе 9, неуловимые частицы Хиггса должны быть мельчайшими составляющими поля Хиггса – поля, которое по предположениям физиков формирует Хиггсов океан и через это придает массу другим фундаментальным семействам частиц. Сегодняшние теоретические и экспериментальные изыскания предполагают, что Хиггс должен иметь массу в диапазоне от ста до тысячи масс протона. Если нижний предел этого диапазона окажется правильным, то Фермилаб имеет достаточно хорошие шансы открытия частицы Хиггса в ближайшем будущем. И определенно, если Фермилаб потерпит неудачу и если оценка диапазона масс, тем не менее, точна, Большой Адронный Коллайдер

должен произвести частицы Хиггса в изобилии к концу десятилетия. Обнаружение частиц Хиггса будет важнейшей вехой, так как оно подтвердит существование семейств полей, которые теоретическая практика физиков и космологов вызвала к жизни десятилетия назад без какого-либо экспериментального доказательства.

Другая главная цель как Фермилаба, так и Большого Адронного Коллайдера заключается в обнаружении доказательства суперсимметрии. Повторим из Главы 12, что суперсимметричные пары частиц, чьи спины отличаются на половинку единицы, являются идеей, которая исходно появилась из исследований теории струн в начале 1970х. Если супперсимметрия имеет место в реальном мире, то для каждого из известных видов частиц со спином-1/2 должны существовать виды-партнеры со спином-0; для каждого из известных видов частиц со спином-1 должны существовать виды-партнеры со спином-1/2. Например, для электрона со спином-1/2 должна существовать частица со спином-0, называемая суперсимметричным электроном или, для краткости, сэлектроном; для кварков со спином-1/2 должны существовать суперсимметричные кварки со спином-0 или скварки; для нейтрино со спином-1/2 должны существовать снейтрино со спином-0; для глюонов, фотонов и W- и Z-частиц со спином-1 должны существовать глюино, фотино и вино и зино со спином-1/2. (Да, физики вошли в раж).

Никто никогда не детектировал любой из этих обозначенных двойников, а объяснение в том (физики надеются, скрестив пальцы), что суперсимметричные частицы тяжелее, чем их известные дубликаты. Теоретические рассмотрения наводят на мысль, что суперсимметричные частицы должны быть в тысячи раз тяжелее протона, и в этом случае их отсутствие в экспериментальных данных не должно быть удивительным: существующие атомные ускорители не имеют адекватной мощи, чтобы произвести их. В пришедшем десятилетии это изменится. Уже заново обновленный ускоритель в Фермилабе имеет шанс открыть некоторые суперсимметричные частицы. И, как и с Хиггсом, если Фермилаб не сможет найти доказательств суперсимметрии и если ожидаемый диапазон масс суперсимметричных частиц достаточно корректен, Большой Адронный Коллайдер должен произвести их с легкостью.

Подтверждение суперсимметрии будет самым важным достижением в физике элементарных частиц более чем за два десятилетия. Оно установит следующий этап в нашем понимании физики частиц за пределами успешной стандартной модели и обеспечит обстоятельное доказательство того, что теория струн следует правильному пути. Но заметим, что это не подтвердит саму теорию струн. Даже если суперсимметрия была открыта в ходе разработки теории струн, физики с тех пор давно осознают, что суперсимметрия более общий принцип, который может быть легко включен в традиционные подходы с точечными частицами. Подтверждение суперсимметрии должно установить необходимый элемент струнной схемы и должно задать следующие исследования, но оно не является "дымящимся пистолетом" теории струн.

С другой стороны, если сценарий мира на бране корректен, грядущие эксперименты на ускорителях имеют потенциал подтверждения теории струн. Как отмечалось коротко в Главе 13, если внешние измерения в сценарии мира на бране окажутся больше 10–16 сантиметра, то не только гравитация должна быть внутренне сильнее, чем мы ранее думали, но струны также должны быть существенно больше. Поскольку более длинные струны менее жесткие, они требуют меньше энергии, чтобы колебаться. В то время как в общепринятой струнной схеме колебательные моды струны должны иметь энергии, которые более чем в миллион миллиардов раз выходят за пределы досягаемости наших экспериментов, в сценарии мира на бране энергии колебательных мод струны могут быть также малы, как тысячи протонных масс. При таком раскладе высокоэнергетические столкновения в Большом Адронном Коллайдере будут близки к хорошо посланному мячу для гольфа, который рикошетирует внутри пианино; столкновения будут иметь достаточно энергии, чтобы возбудить многие "октавы" колебательных мод струны. Эксперименты будут обнаруживать богатство новых, никогда ранее не виданных частиц, – что означает, новых, никогда ранее не виданных колебательных мод струны, – чьи энергии будут соответствовать гармоническим резонансам струнной теории.

Свойства этих частиц и взаимосвязи между ними будут безошибочно показывать, что все они являются частью одной и той же космической партитуры, что все они суть различные, но связанные ноты, что все они являются особыми колебательными модами одного вида объектов – струн. В обозримом будущем это наиболее вероятный сценарий для прямого подтверждения теории струн.

Космические истоки

Как мы говорили в предыдущих главах, космическое микроволновое фоновое излучение играет доминирующую роль в космологических исследованиях с момента его открытия в середине 1960х. Причина ясна: на ранних этапах вселенной пространство было заполнено смесью электрически заряженных частиц – электронов и протонов, – которые с помощью электромагнитного взаимодействия непрерывно испускали и поглощали фотоны сюда и туда. Но всего через 300 000 лет после Взрыва вселенная охладилась достаточно, чтобы электроны и протоны соединились в электрически нейтральные атомы, – и дальше с этого момента радиация путешествует сквозь пространство большей частью беспрепятственно, обеспечив четкую мгновенную фотографию ранней вселенной. Имеется грубо 400 миллионов этих первичных фотонов космического микроволнового излучения, нетронутых реликтов ранней вселенной, рассеянных в каждом кубическом метре пространства.

Поделиться:
Популярные книги

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Город Богов 4

Парсиев Дмитрий
4. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 4

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Девочка из прошлого

Тоцка Тала
3. Айдаровы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка из прошлого

Бастард Императора

Орлов Андрей Юрьевич
1. Бастард Императора
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Бастард Императора

Санек 4

Седой Василий
4. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 4

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал