Built. Неизвестные истории известных зданий
Шрифт:
В I веке до н. э. в высших эшелонах римского общества родился Марк Лициний Красс. Он вырос и стал уважаемым генералом (он помог подавить восстание рабов под предводительством Спартака) и известным предпринимателем. Красс был человеком, который всюду видел возможности: наблюдая за тем, какие разрушения приносят римские пожары, он создал первую в мире пожарную бригаду, в которую входили 500 специально обученных рабов. Бригада представляла собой частный бизнес: они мчались к горящему зданию, угрожали конкурирующей пожарной бригаде и прогоняли ее, а затем стояли без дела, пока Красс согласовывал размер платы за тушение пожара с ошеломленными хозяевами дома. Если они не приходили к соглашению, то пожарные просто стояли и смотрели, как дом сгорает дотла. Потом Красс предлагал хозяевам смехотворную
После Великого пожара Рима император Нерон издал несколько важных указов. Он велел расширить улицы, ограничить высоту жилых домов шестью этажами, а пекарни и кузницы строить подальше от жилых районов и помещать их в зданиях с двойными стенами с воздушной прослойкой. Он провозгласил, что балконы следует делать огнеупорными, чтобы легче было бежать из горящего дома, и инвестировал средства в улучшение системы водоснабжения, благодаря которой можно тушить пожары. Римляне извлекли из этой трагедии урок, да и мы с вами только выиграли от их выстраданной мудрости. Тысячи лет спустя те же простые принципы – разделение комнат, квартир и зданий огнеупорными материалами, воздушные прослойки – по-прежнему используются для предотвращения пожаров в современных зданиях.
11 сентября 2001 года мир в ужасе наблюдал, как два самолета врезаются в башни Всемирного торгового центра в Нью-Йорке. Я тогда была на каникулах в Лос-Анджелесе перед началом учебы в университете, а на следующий день должна была лететь в Нью-Йорк. Я сидела и в оцепенении смотрела новости, потрясенная тем, что башни рухнули всего через час после того, как в них врезались самолеты. Через несколько дней я полетела прямым рейсом в Лондон, уже ощущая себя частью изменившегося мира.
Если взглянуть на те чудовищные события с инженерной точки зрения, то они оказали огромное влияние на строительство небоскребов. Когда я читала о том, какие упущения в проектировании привели к обрушению башен, я с удивлением узнала, что не только сами самолеты привели к разрушениям подобного масштаба, но и последующий пожар.
В Нью-Йорке много потрясающих небоскребов, а башни-близнецы Всемирного торгового центра (открытого в 1973 году) были одними из культовых символов города. Визуально обе башни казались очень простыми – ровные квадраты с высоты птичьего полета высотой в 110 этажей. В каждой башне была массивная сердцевина из стальных колонн. Но этот позвоночник не отвечал за устойчивость башен – для этого на них был особый «панцирь» с функцией экзоскелета.
Нагрузка находит новые точки приложения, и силы распределяются на соседние части каркаса
Вертикальные колонны, расположенные в метре друг от друга по всему периметру квадрата, соединялись балками на каждом этаже. Балки и колонны вместе образовывали прочный каркас, подобный каркасу «Корнишона», который мы рассматривали ранее, только с огромными прямоугольниками вместо треугольников. Соединения между балками и колоннами были очень прочными. Такой внешний скелет защищал здание от ветра.
Когда в башни врезались самолеты, в экзоскелете образовались огромные прорехи. Они разрушили много колонн и балок. На самом деле инженеры учитывали возможность того, что башню может задеть самолет. Они продумывали, что случится, если «Боинг-707» (самый большой коммерческий самолет на момент постройки зданий) врежется в здание, и производили соответствующие расчеты. Балки и колонны сконструировали с очень прочными соединениями, так что, даже если часть каркаса пострадает, нагрузке будет куда распределиться: она уйдет на соседние с повреждением части каркаса (здесь учтен принцип предотвращения несоразмерного разрушения, который инженеры используют после случая в «Ронан-Поинт»).
Самолеты, которые врезались в башни-близнецы, не были «Боингами-707», на основании габаритов которых инженеры делали расчеты за 30
Стальные колонны в сердцевине тоже неестественно перегрелись. От остального здания сердцевину отделяли два слоя гипсокартона (панелей из гипсовой штукатурки, зажатой между двумя плотными листами картона). Смысл был в том, что в случае пожара огонь не сможет проникнуть в сердцевину через эти два слоя, так что люди смогут пройти в безопасную зону и эвакуироваться из здания по лестнице. Но гипсокартон оказался поврежден, из-за чего колонны в сердцевине оказались подвержены огню, и предполагаемый безопасный путь эвакуации оказался заблокирован.
Колонны становились все слабее и слабее, и, когда температура достигла 1000°C, они не выдержали. Они больше не выдерживали нагрузку и стали гнуться.
В конце концов колонны совсем обрушились, и часть здания над ними оказалась уязвима к воздействию гравитации. Этаж над упавшими колоннами рухнул. А этаж, на который он приземлился, не выдержал такой нагрузки и тоже обрушился. Этажи рушились один за другим, как кости домино, и катастрофа Кэннинг-Тауна повторилась, только в гораздо более поразительных масштабах – этажи обрушились, а за ними и обе башни. Противопожарная защита – краска и слои гипсокартона – не соответствовала масштабам и интенсивности возгорания.
С того дня проектирование небоскребов сильно изменилось. Теперь мы следим за тем, чтобы пути эвакуации были защищены более надежно. Легче всего этого добиться, если строить сердцевину здания из бетона, а не из стали, так что между огнем и безопасной зоной будет не слабая гипсокартонная стена, а прочная бетонная.
Бетон не является хорошим проводником: он плохо проводит тепло, а это значит, что ему нужно больше времени на нагревание. Однако для укрепления бетона в него вставляют стальную арматуру. Вот она как раз хорошо проводит тепло, и это создает инженерам проблемы. При пожаре стальная арматура накаляется, и тепловая энергия быстро распространяется по всей длине прутьев, а бетон вокруг них медленно нагревается. Горячая сталь расширяется быстрее, чем более холодный бетон, из-за чего внешние слои бетона трескаются и лопаются. По этой же причине трескаются стаканы из толстого стекла, если налить в них горячую воду: внутренний слой стекла сильно нагревается и расширяется, а внешний остается холодным, потому что стекло, как и бетон, плохо проводит тепло. Поскольку внутренний слой расширяется и создает дополнительную нагрузку на внешний, внешний слой трескается.
Благодаря экспериментам и испытаниям мы знаем, сколько времени нужно на то, чтобы бетон передал тепло стальной арматуре, и сколько нужно на нагревание арматуры, которая повредит бетон. Поэтому мы помещаем арматуру настолько глубоко в слой бетона, чтобы успеть потушить пожар до того, как внешний слой бетона треснет. Благодаря этому у людей будет достаточно времени, чтобы покинуть здание по эвакуационному пути внутри бетонной сердцевины, а пожарные успеют взять пламя под контроль, пока здание не рухнуло. Чем выше и больше здание, тем дольше эвакуация, и тем глубже сталь должна находиться в бетоне. Всего несколько сантиметров играют важную роль.