Чтение онлайн

на главную - закладки

Жанры

CCTV. Библия видеонаблюдения. Цифровые и сетевые технологии
Шрифт:

В наиболее распространенных реализациях алгоритма MPEG фиксируется величина сжимаемого потока. Это означает, что чем больше изменений происходит от кадра к кадру, тем хуже качество сжатого видеоизображения. Если в кадре ничего не изменяется, то качество сжатого изображения — отличное, но если объект начал двигаться, качество сжатого видеоизображения падает. Для видеонаблюдения такую ситуацию нельзя считать удовлетворительной, потому что здесь очень важно наблюдение с хорошим качеством именно движущихся объектов. В Motion Wavelet при наличии в кадре какого-либо действия фиксируется качество: если в кадре начинается движение, то увеличивается величина сжатого потока, а качество остается стабильным.

Еще одна проблема, которая возникает при передаче видеоизображения по сети в форматах MPEG, заключается в том, что видеопоток, сжатый с одной скоростью (например, 25 к/с), без дополнительного перекодирования нельзя передавать меньшей скоростью из-за жесткой привязки

в последовательности кадров друг к другу. В алгоритмах Wavelet и JPEG нет этой проблемы. Она была решена и в алгоритме Motion Wavelet, который также позволяет при передаче пропускать кадры.

Так как Motion Wavelet для сжатия кадров использует вейвлет-преобразование, то все преимущества этого сжатия сохранились. Благодаря масштабируемости вейвлет-сжатия Motion Wavelet также позволяет из одного видеопотока быстро получать видеопотоки разного разрешения, когда видеопоток с высоким разрешением используется, например, для записи, а для удаленного просмотра используется видеопоток меньшего разрешения. Кроме того, в алгоритмах, использующих дискретное косинусное преобразование, как, например, JPEG и MPEG, возникает эффект блочности, но для Motion Wavelet, как и для любого вейвлет-сжатия, этот эффект нехарактерен.

Пикселы и разрешение

Все алгоритмы компрессии, о которых мы говорили ранее, базируются на одном мельчайшем элементе. Это пиксел, «кирпичик», из которых строится любое цифровое изображение. Этот термин необходимо проанализировать подробнее, так как именно пиксел определяет четкость изображения и детализацию, которую мы увидим.

Рис. 9.45. Пикселы RGB на люминофоре цветного монитора или телевизора с электронно-лучевой трубкой

Пиксел (от англ. Pixel, Picture Element, иногда Pel, т. е. элемент изображения) — это мельчайшая часть электронного (цифрового) изображения. Пикселы — это атомы изображения. Крайне важно понимать, что такое пиксел для цифровой фотографии, но то же самое можно сказать и применительно к видеонаблюдению, особенно после появления цифровых видеорегистраторов. Многие из вас употребляют термин «пиксел» при печати брошюр и каталогов для своей компании, а также при обсуждении характеристик жидкокристаллических дисплеев, но при этом мы совсем необязательно говорим о тех же пикселах, которые применяются в цифровом видео.

Пикселы можно связать с разрешением изображения, но крайне важно понимать различия между пикселами разного рода, поскольку очень часто мы пытаемся распознать мельчай шие детали (например, лицо злоумышленника) на изображении, сжатом с высокой степенью компрессии.

В офсетной печати вместо пикселов говорят точки (dots), но сути дела это не меняет, поскольку эти элементы невозможно разделить на более мелкие и получить при этом дополнительную значащую информацию об изображении, частью которого они являются. Проще говоря, в пикселах содержится элементарная информация о мельчайших деталях изображения, то есть информация о цвете и яркости пиксела. Применительно к телевидению мы говорим в данном случае о цветности (chrominance) и яркости (luminance) элемента изображения. Поскольку при отображении всего разнообразия цветов и теней мы ограничены набором первичных цветов, пикселы состоят из более мелких деталей, которые отражают определенное значение своих первичных цветов. Поэтому пикселы на самом деле не являются мельчайшими элементами изображения, однако только группа всех первичных элементов образует «полный» пиксел.

Рис. 9.46. Расположение пикселов RGB на стандартном телевизионном экране (смещение на половину пиксела по вертикали связано с чересстрочной разверткой)

А одинаковы ли пикселы, которые используются в цифровой фотографии, телевидении и печати? Это очень важный вопрос, которому мы уделим особое внимание. Нет, это пикселы разного рода. И в разнице между ними кроется множество ошибок и неточностей, которые возникают во многих сферах, связанных с обработкой изображения, одной из которых и является видеонаблюдение.

Как известно, в цветном телевидении используют цвета красного, зеленого и синего люминофора, чтобы имитировать все остальные цвета. С помощью трех первичных цветов (RGB) мы можем представить практически любой (почти любой) цвет, воспринимаемый

человеческим глазом. При соответствующей интенсивности яркости красного, зеленого и синего люминофора мы также можем отобразить любую яркость пиксела (от белого до черного), в том числе и телесные цвета. На самом деле смешивание цветов происходит уже у нас в глазах, когда мы смотрим на пикселы с нормальной зрительной дистанции, которая настолько велика по сравнению с размером пикселов, что мы воспринимаем три первичные точки как одну точку результирующего цвета, полученную в результате аддитивного смешения цветов красного, зеленого и синего люминофора в пикселе.

Рис. 9.47. Пример иного расположения элементов RGB, из которых состоит пикселы

В аналоговом телевидении, которым большинство из нас до сих пор пользуется, и, конечно же, в видеонаблюдении пикселы в качестве элементарных деталей присутствуют на обоих концах сложной цепи, в результате которой мы получаем изображение: на входе, т. е. в телекамере, и на выходе, т. е. на мониторе. В телекамерах применяются ПЗС-матрицы, у которых мельчайшие элементы — пикселы — состоят из красной, зеленой и синей компоненты. Эти цветовые компоненты пиксела реагируют на красную, зеленую и синюю часть спектра проецируемого изображения, генерируя электроны пропорционально количеству цвета этой цветовой компоненты пиксела проецируемого туда изображения. В трехматричных ПЗС-телекамерах свет разделяется на три цветовые группы светоделительной призмой, а затем каждая световая группа проецируется на соответствующую ПЗС-матрицу. Это означает, что для каждого первичного цвета имеется отдельная ПЗС-матрица. Трехматричные ПЗС-телекамеры дают качественный видеосигнал с прекрасной цветопередачей и высоким разрешением. К сожалению, трехматричные ПЗС-телекамеры редко используются в видеонаблюдении, так как они очень дороги и, как правило, более громоздки, чем их одноматричные аналоги, которые в основном и используются. В цветных одноматричных ПЗС-телекамерах каждый пиксел состоит из трех первичных цветовых элементов (RGB). Справедливости ради нужно отметить, что существуют ПЗС-матрицы, где в качестве первичных цветов используются не красный, зеленый и синий, а голубой, желтый и пурпурный (как основные цвета в печати). Но такие телекамеры очень редко применяются в видеонаблюдении, и поэтому мы не будем рассматривать их как значительный сегмент видеонаблюдения. В противном случае нам было бы необходимо знать, что голубой, желтый и пурпурный преобразуются в самой телекамере при помощи таблиц в красный, зеленый и синий, так как композитный видеосигнал на выходе все равно должен быть представлен значениями RGB. Как видно на схематичной иллюстрации матрицы ПЗС (одноматричной телекамеры) фильтрация цветов RGB происходит в форме мозаики, поэтому этот фильтр называется мозаичным. Следует отметить, что зеленых светочувствительных элементов в два раза больше, чем синих или красных. Это связано с тем, что большая часть яркостной информации лежит в пределах зеленого спектра и человеческий глаз наиболее чувствителен к зеленому цвету. Именно эти зеленые ячейки сильно влияют на разрешение телекамеры.

Рис. 9.48. Мозаичный фильтр на ПЗС-матрице

Логично было бы предположить, что разрешение в ТВ-линиях цветной одноматричной ПЗС-телекамеры рассчитывается путем деления количества горизонтальных (трехцветных) пикселов на 3/4 (соотношение сторон), на практике оно считается иначе. Учитывая чересстрочную развертку и мозаичное расположение, реальное разрешение цветной одноматричной ПЗС-телекамеры будет порядка 70–80 % от приведенных ранее расчетов. Таким образом, ПЗС-матрица размером 768x582 пиксела будет иметь разрешение приблизительно 768/4x3x0.8=460 ТВ-линий. А цветные трехматричные ПЗС-телекамеры имеют как минимум на 100 ТВ-линий больше только потому, что используются все трехцветные пикселы и отсутствует мозаичный фильтр.

В качестве необходимого отступления от темы мы напомним нашим читателям, что до изобретения ПЗС-телекамер (когда использовались телекамеры с передающими трубками) в связи с тем, что изображение считывается с мишени трубки в результате сканирования непрерывным электронным лучом, не существовало дискретных и конечных мельчайших элементов изображения (как в случае с ПЗС-матрицами).

Дискретные элементы изображения появились только с изобретением цветного телевидения, когда стали изготовлять телевизоры с электронно-лучевыми трубками, в которых использовалась цветоделительная решетка. Именно она разделяла световой поток на красные, зеленые и синие точки.

Поделиться:
Популярные книги

Недотрога для темного дракона

Панфилова Алина
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
5.00
рейтинг книги
Недотрога для темного дракона

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Мифы Древней Греции

Грейвз Роберт Ранке
Большие книги
Старинная литература:
мифы. легенды. эпос
9.00
рейтинг книги
Мифы Древней Греции

Купчиха. Трилогия

Стриковская Анна Артуровна
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Купчиха. Трилогия

Правильный попаданец

Дашко Дмитрий Николаевич
1. Мент
Фантастика:
альтернативная история
5.75
рейтинг книги
Правильный попаданец

Законы Рода. Том 6

Андрей Мельник
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Изгой Проклятого Клана

Пламенев Владимир
1. Изгой
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Изгой Проклятого Клана

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11