Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:
И действительно, есть большая проблема: любой отдельный распад бозона Хиггса, даже на «хорошие» частицы вроде двух фотонов или четырех лептонов, можно принять за другие процессы с тем же исходом, в которых бозон Хиггса никак не замешан (и чаще всего они и происходят). Вы не просто ищете событие данного конкретного типа, вы ищете некоторое увеличение количества событий определенного типа – стог сена, сложенный из соломинок разной длины, в котором вы ищете небольшой избыток соломинок одного определенного размера. Для этого не нужно скрупулезно изучать каждую соломинку – следует обратиться к статистике.
Чтобы лучше понять роль статистики в поисках бозона Хиггса, начнем с
Таким образом, вы начинаете с «нулевой гипотезы», которая является своеобразным способом заявить о том, «какого результата вы ожидаете, если ничего экстраординарного не произойдет». Для монеты нулевая гипотеза состоит в том, что при каждом подкидывании вероятность выпадения орла и решки составляет 50 на 50. Для бозона Хиггса нулевая гипотеза состоит в том, что все результаты получены в процессах, где бозона Хиггса вообще нет. Тогда мы спросим, согласуются ли с нулевой гипотезой фактически полученные результаты – а именно, был ли реальный шанс получить такие же результаты при подкидывании «правильной» монетки, или – в ситуации с распадами частиц – если бы бозона Хиггса там не было.
Представьте себе, что мы будем подбрасывать монетку 100 раз. (По-хорошему, мы должны подбросить ее намного больше раз, но нам лень.) Если монетка совершенно нормальная, мы ожидаем получить 50 выпадений орла и 50 – решки или близкое к этому соотношение. Мы не удивились бы, если бы выпал, скажем, 52 раза орел и 48 – решка, но если бы мы получили 93 раза орла и только 7 раз решку, это было бы крайне подозрительно. Хотелось бы эти свои подозрения выразить в количественном виде или, другими словами, узнать, при каких именно отклонениях от предсказанного соотношения исходов 50 на 50 мы должны были бы сделать вывод о том, что у нас была «неправильная» монетка?
Быстрых и четких ответов на этот вопрос нет. Мы могли подбрасывать монетку миллиард раз, и каждый раз выпадал бы орел, и это, в принципе, возможно – просто нам очень, очень везло. Так же работает и наука. Мы не «доказываем» правильность результатов, как это можно сделать в математике или логике, а просто накапливаем все больше и больше свидетельств их правильности, увеличивая их достоверность. Если полученные данные уже существенно отличаются от тех, которые можно было бы ожидать в случае верности нулевой гипотезы, мы отвергаем ее и двигаемся дальше. Поскольку мы рассматриваем процессы, вероятностные по своей сути, и имеем дело только с конечным числом событий, неудивительно, что мы получаем некоторое отклонение от идеального результата. Типичное отклонение обозначается греческой буквой сигма (ст). Это позволит нам выразить в удобном виде, насколько велико отклонение реально наблюдаемых данных от идеального результата, то есть насколько оно больше, чем сигма. Если разница между наблюдаемым результатом измерения и теоретическим прогнозом в два раза больше типичного ожидаемого разброса, мы говорим, что получен результат «две сигмы».
Доверительные интервалы для 100 бросков монеты, когда математическое ожидание равно 50, а среднеквадратичное отклонение в сигмах равно 5. Длина интервала в одну сигму – от 45 до 55, а интервала в пять сигм – от 25 до 75.
Когда мы делаем измерения,
Сигма хороша тем, что она может трансформироваться в вероятность того, какой реальный результат будет получен (даже несмотря на то, что точная формула очень сложна и, как правило, вы просто ищете число в справочнике). Если мы бросаем монетку 100 раз и от 45 до 55 раз выпадает орел, мы говорим, что результат находится «в интервале одной сигмы», что происходит в 68 % испытаний.
Другими словами, результаты, отличающиеся более чем на одну сигму, мы получаем примерно в 32 % испытаний, что немало, так что в результате, отличающемся на одну сигму, нет ничего, что могло бы насторожить. Вы бы не стали подозревать, что монетка «неправильная», только потому, что в 100 подкидываниях 55 раз выпал орел и 45 решка.
Большие сигмы соответствуют все менее вероятным результатам (при условии, что верна нулевая гипотеза). Если у вас из 100 раз орел выпал 60, это отклонение в две ст, и такое происходит только примерно в 5 % испытаний. Этот результат кажется маловероятным, но не совсем неправдоподобным. Его недостаточно, чтобы отвергнуть нулевую гипотезу, но достаточно, чтобы возбудить некоторые подозрения. Выпадению 65 раз орла соответствовало бы отклонению в три ст, что соответствует вероятности 0,3 %. Эти события случаются довольно редко, и теперь у нас появились законные основания думать, что происходит нечто странное. Если бы у нас выпал орел 75 раз из 100, это бы было отклонением в пять ст, а такие события случаются реже чем один раз на миллион. И тогда мы вправе сделать вывод, что сигнал был не просто статистической флуктуацией, и нулевая гипотеза неверна – монетка попалась явно неправильная.
Сигнал и фон
Поскольку физика элементарных частиц управляется квантовой механикой, она очень похожа на подкидывание монетки: самое большее, что мы можем сделать, это предсказывать вероятности. На БАКе мы сталкиваем протоны друг с другом и предсказываем вероятность различных взаимодействий. Для частного случая поиска бозона Хиггса мы рассматриваем различные «каналы», каждый из которых определяется типом частиц, захваченных детекторами. Есть двухфотонный канал, двухлептонный канал, четырехлептонный канал, канал с двумя струями и двумя лептонами, и так далее. В каждом случае мы суммируем энергии вылетающих частиц и с помощью аппарата квантовой теории поля (дополненного реальными измерениями) рассчитываем, сколько событий могли бы ожидать для каждого значения полной энергии. Результаты, как правило, изображаются в виде гладкой кривой.
Наша нулевая гипотеза состоит в том, что бозона Хиггса нет. Если же бозон Хиггса существует, да к тому же обладает какой-то ненулевой массой, основной ожидаемый эффект от него состоит в том, что для соответствующей энергии число событий увеличится. Если масса бозона равна 125 ГэВ, создается некоторое дополнительное количество частиц с суммарной энергией 125 ГэВ, и так далее. Создание бозона Хиггса и его распад обеспечивает механизм (в дополнение ко всем процессам, не связанным с бозоном Хиггса) получения частиц, суммарная энергия которых, как правило, равна массе хиггсовского бозона, что приводит к некоторому количеству дополнительных (по отношению к фону) событий. И мы отправляемся на «сбор шишек» – то есть ищем заметные отклонения от гладкой кривой, которую бы увидели при отсутствии бозона Хиггса.