Чтение онлайн

на главную - закладки

Жанры

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:

Неестественная вселенная

Темная материя представляет собой веский аргумент в пользу того, что нам нужно строить физику за рамками Стандартной модели. В этом вопросе обнаруживается самое главное расхождение между теорией и экспериментом, а физики привыкли иметь дело именно с такими противоречиями. Есть также и другого рода аргументы в пользу того, что новая физика необходима – сама Стандартная модель требует доработки.

Чтобы определить какую-либо теорию вроде Стандартной модели, мы должны привести список полей, которые она описывает (поля кварков, лептонов, калибровочных бозонов, поле Хиггса), и набор различных чисел – параметров теории, включающих массы частиц, а также величины всех взаимодействия. Например, величина электромагнитного взаимодействия определяется числом, называемым «постоянной тонкой структуры», это знаменитая физическая константа, примерно равная 1/137.

В начале XX века некоторые физики пытались придумать хитрые нумерологические формулы, объясняющие, почему она имеет именно такое значение. В наши дни мы просто принимаем это как данность и считаем ее частью Стандартной модели, хотя еще есть надежда, что более совершенная теория фундаментальных взаимодействий позволит нам вычислить ее из первых принципов.

Хотя все эти параметры мы, в принципе, можем пойти и измерить, физики до сих пор верят, что у физических характеристик есть «естественные» значения, поскольку измеряемые нами значения, как учит нас квантовая теория поля, представляют собой сложные комбинации различных процессов. По сути, чтобы получить окончательный ответ, нужно просуммировать вклады от разных видов виртуальных частиц. Когда мы измеряем заряд электрона по рассеянию фотона на нем, в процессе участвует не только электрон. Этот электрон – колебание поля, на которое накладываются квантовые флуктуации всех других полей, они складываются, и перед нами предстает то, что мы воспринимаем как «физический электрон». Каждая конфигурация виртуальных частиц вносит определенный вклад в окончательный ответ, и иногда их сумма бывает довольно большой.

Поэтому было бы большой неожиданностью, если бы наблюдаемое значение некоторой величины оказалось гораздо меньше, чем вклады отдельных процессов, участвующих в ее образовании. Это означало бы, что большой положительный вклад сложился с большим отрицательным вкладом, и в результате возник крошечный конечный результат. Такое, конечно, можно себе представить, но это не то, что хотелось бы получить. Если измеренный параметр оказывается гораздо меньше, чем мы ожидали, мы объявляем, что существует «проблема тонкой настройки» параметра, и говорим, что теория «неестественная». В конечном счете, конечно, не мы, а природа решит, что естественно, а что – нет. Но если теория оказывается «неестественной», это, возможно, первый намек на то, что нужно подумать над новой теорией.

По большей части параметры Стандартной модели вполне естественные. Есть два явных исключения: значение поля Хиггса в пустом пространстве и плотность энергии пустого пространства, которую иначе называют «энергией вакуума». Оба значения намного меньше, чем это следует из Стандартной модели. Обращаем внимание, что они оба связаны со свойствами пустого пространства, или «вакуума». Это интересное обстоятельство, но оно еще никому не помогло.

Обе проблемы – слишком маленькие поле Хиггса и энергия вакуума – очень похожи. Определение обеих величин можно начать с любого понравившегося вам значения, а затем к нему нужно добавить все расчетные дополнительные вклады от взаимодействий с виртуальными частицами. В обоих случаях в результате учета этих вкладов результат будет все время увеличиваться. В случае поля Хиггса грубая оценка показывает, что этот результат будет в 1016 (десять квадриллионов) раз больше, чем то, что есть на самом деле. Если честно, мы не можем слишком уверенно говорить о том, что «будет», так как у нас нет единой теории всех взаимодействий. Наша оценка исходит из того, что за счет виртуальных частиц поле Хиггса будет увеличиваться, но у него есть физический предел, до которого оно может подняться – так называемый масштаб Планка – энергия, равная примерно 1018 ГэВ, при которой уже становится важной квантовая гравитация, и само понятие пространство-время утрачивает какой-либо определенный смысл.

Эта гигантская разница между ожидаемым значением поля Хиггса в пустом пространстве и его наблюдаемым значением называется «проблемой иерархии». Энергетический масштаб, характеризующий слабые взаимодействия (значение поля Хиггса – 246 ГэВ), и тот, который характеризует гравитацию (энергия Планка – 1018 ГэВ), очень сильно различаются (проблема иерархии, о которой мы уже кпоминали). Это уже достаточно странно, но мы должны помнить, что именно квантово-механические взаимодействия с виртуальными частицами стремятся поднять масштаб слабых взаимодействий до масштаба Планка. Почему же они все-таки настолько разные?

Энергия вакуума

Как бы ни была трудна проблема иерархии, проблема энергии вакуума еще хуже. В 1998 году астрономы, изучающие скорости далеких галактик, сделали удивительное открытие: Вселенная не просто расширяется,

она расширяется ускоренно! Галактики не только удаляются от нас, они разбегаются все быстрее и быстрее. Существуют различные возможные объяснения этого явления, но есть простое, которое отлично подходит к имеющимся в настоящее время данным: расширяться Вселенную заставляет энергия вакуума, введенная в 1917 году Эйнштейном в виде «космологической постоянной».

Идея Эйнштейна состоит в том, что существует мировая постоянная, которая показывает, какая энергии содержится в определенном объеме совершенно пустого пространства. Если эта величина не равна нулю – а никаких причин ей быть нулевой нет, – эта энергия расталкивает разные части Вселенной, что приводит к космическому ускорению. Открытие этого ускорения привело в 2010 году Сола Перлмуттера, Адама Рисса и Брайана Шмидта к Нобелевской премии.

Мы с Брайаном Шмидтом, будучи аспирантами, сидели в одном офисе. В моей последней книге «Из вечности в сегодня» (From Eternity to Here) я рассказал историю о пари, которое мы с Брайаном заключили еще в те старые добрые времена: он считал, что мы не найдем полную плотность материи во Вселенной в ближайшие двадцать лет, а я утверждал, что найдем. Отчасти благодаря именно его усилиям мы сейчас уверены, что знаем плотность Вселенной, и в 2005 году я забрал свой приз – маленькую бутылку старого портвейна, причем для этого мы устроили забавную церемонию на крыше Куинси Хауса в Гарварде. С тех пор Брайан стал астрономом мирового класса, но остался неисправимым пессимистом – не так давно поспорил со мной о том, что невозможно обнаружить бозон Хиггса с помощью БАКа, и проиграл и это пари. Мы оба за это время подросли, соответственно, выросли и ставки. На сей раз проигравший Брайан должен будет на свои мили, собранные при частых перелетах, оплатить билеты для меня и моей жены Дженнифер в Австралию, куда мы собираемся прилететь к нему в гости.

Чтобы объяснить наблюдения астрономов, нам не нужна очень большая энергия вакуума – хватит и примерно одной десятитысячной электронвольта на кубический сантиметр. Точно тем же способом, что и при оценке поля Хиггса, мы можем грубо оценить энергию вакуума. Ответ получается впечатляющим: 10116 электронвольт на кубический сантиметр. Это больше, чем наблюдаемая величина, в 10120 раз – разница столь большая, что мы даже не пытаемся придумать для нее определение.

Расхождение между теоретическим и экспериментальным значениями энергии вакуума принадлежит к числу главных нерешенных проблем современной физики. Один из многих вкладов, которые делают расчетную энергию вакуума такой большой, вносит поле Хиггса, поскольку ненулевое поле в пустом пространстве должно обладать большой энергией (положительной или отрицательной). Именно поэтому Фил Андерсон и сомневался в правильности того механизма, который мы теперь называем механизмом Хиггса: такую большую плотность энергии ненулевого поля в пустом пространстве совместить с относительно небольшой плотностью энергии, на самом деле наблюдаемой в пустом пространстве, кажется невозможным. Сегодня мы не считаем, что эта проблема закроет механизм Хиггса, – есть много других, еще больших вкладов в энергию вакуума, все гораздо сложнее…

Возможно также, что энергия вакуума в точности равна нулю, а части Вселенной отталкиваются друг от друга за счет другой энергии, которая медленно убывает, а не строго постоянна. Эта энергия носит название «темной энергии», и астрономы делают все от них зависящее, чтобы проверить, может ли она быть причиной ускорения Вселенной. Самой популярной моделью носителя темной энергии является некое новое скалярное поле, похожее на поле Хиггса, но с гораздо меньшей энергией (массой). Это поле должно постепенно стремиться к нулевой энергии, но это будет медленный процесс, и он может занять миллиарды лет. А сейчас энергия должна бы вести себя более или менее как темная энергия – плавно меняться в пространстве и медленно убывать со временем.

Бозон Хиггса, обнаруженный на БАКе, к энергии вакуума не имеет прямого отношения, но есть косвенная связь. Узнав о нем больше, мы бы поняли, почему энергия вакуума столь мала или как может возникнуть медленно меняющаяся составляющая темной энергии. На этом пути у нас не очень большие шансы на успех, но в решении такой трудной задачи нужно использовать любые шансы.

Суперсимметрия

Главный урок, который мы должны извлечь из успеха электрослабой теории, состоит в том, что симметрия – наш союзник. Физики озаботились тем, чтобы найти как можно больше симметрий. Пожалуй, наиболее амбициозная попытка в этом направлении связана с названием, которое, хотя и соответствует сути, звучит не слишком оригинально. Это теория суперсимметрии.

Поделиться:
Популярные книги

Леди для короля. Оборотная сторона короны

Воронцова Александра
3. Королевская охота
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Леди для короля. Оборотная сторона короны

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Чужак. Том 1 и Том 2

Vector
1. Альтар
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Чужак. Том 1 и Том 2

Как я строил магическую империю 4

Зубов Константин
4. Как я строил магическую империю
Фантастика:
боевая фантастика
постапокалипсис
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 4

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Этот мир не выдержит меня. Том 4

Майнер Максим
Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Этот мир не выдержит меня. Том 4

Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Ланьлинский насмешник
Старинная литература:
древневосточная литература
7.00
рейтинг книги
Цветы сливы в золотой вазе, или Цзинь, Пин, Мэй

Вы не прошли собеседование

Олешкевич Надежда
1. Укротить миллионера
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Вы не прошли собеседование

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II