Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:
В отличие от обычного орбитального углового момента наименьшая величина спина составляет половину ?, а не целое ?. Электрон, так же как и верхний кварк, имеет спин ?/2. (Для объяснений нужно глубже закопаться в квантовую теорию поля, поэтому просто посчитаем это причудой квантовой теории поля.)
Существует простая связь между спином частицы и ее природой, то есть бозон она или фермион. Каждый бозон имеет спин, который выражается целым числом: 0, 1, 2, и т. д. (здесь и далее мы выражаем спин в единицах ?). Каждый фермион имеет спин, выражаемый целым числом плюс половина: 1/2, 3/2,5/2, и т. д. Эта связь такая жесткая, что мы часто определяем бозоны как «частицы с целым спином», а фермионы – как «частицы с полуцелым спином». Это не совсем верно – по определению, которое
Все частицы Стандартной модели обладают весьма определенными спинами. Спин всех известных элементарных фермионов – кварков, заряженных лептонов и нейтрино – равен 1/2. Гравитино – гипотетический суперсимметричный партнер гравитона – имел бы спин 3/2, но гравитино пока не нашли. Сам гравитон имеет спин 2, и он в этом отношении не похож на все остальные элементарные частицы. Другие калибровочные бозоны – фотон, глюоны, а также W и Z – все имеют спин 1. (Разница между гравитоном и другими бозонами – переносчиками сил – в конечном счете определяется тем, что симметрия, лежащая в основе гравитации, – симметрия самого пространства – времени, в то время как другие силы живут в пространстве – времени.) Бозон Хиггса, который стоит в стороне от всех остальных, имеет спин 0. Частицы с нулевым спином называются скалярами, а поля, из колебаний которых они возникают, называют скалярными полями.
Важно различать «спин частиц» и «величину спина, измеряемую относительно некоторой оси (проекцию)». Предположим, что вектор углового момента Земли, вращающейся вокруг своей оси, направлен от Южного полюса к Северному и имеет некоторую (большую) величину. Мы можем спросить, каков этот угловой момент по отношению к оси, направленной в противоположном направлении – с севера на юг. Ответом была бы та же величина, но взятая со знаком минус. Сам угловой момент не изменился, мы просто измерили его по отношению к другой оси. Если мы смотрим на исходную ось сверху, то положительный спин означает, что мы видим объект, вращающийся против часовой стрелки, а отрицательный – что объект вращается по часовой стрелке. Земля вращается против часовой стрелки с точки зрения того, кто смотрит вниз с Северного полюса, поэтому она имеет положительный спин. (Это известное «правило правой руки» – если вы согнете пальцы правой руки в направлении вращения – то есть как бы охватите цилиндр, – то большой оттопыренный палец укажет направление, вдоль которого спин положителен).
Разрешенные значения при измерении спина частицы относительно некоторой оси. Безмассовым частицам разрешены только значения, соответствующие закрашенным кружкам, в то время как массивные частицы могут принимать значения, соответствующие как закрашенным, так и незакрашенным кружкам.
Можно даже рассмотреть измерение углового момента по отношению к перпендикулярной оси – скажем, оси, направленной по диаметру экватора. По отношению к этому направлению Земля вообще не «вращается» – Северный и Южный полюса остаются в одном и том же положении по отношению к воображаемой оси, направленной вдоль диаметра экватора. Поэтому мы сказали бы, что спин, измеренный относительно этой оси, равен нулю.
Так как полный спин частицы квантован и равен некоторому целому или полуцелому числу %, величина спина, которую можно измерить, также квантуется. Она должна быть равной либо полному спину со знаком плюс, либо полному спину со знаком минус, либо некоторым числам между этими значениями, отстоящими друг от друга на целое число. Для частиц с нулевым спином единственное возможное значение, которое мы можем получить при измерении спина, – это 0. Для частиц со спином 1/2 мы могли бы получить +1/2 или –1/2, и это все. Для частицы со спином 1 мы могли бы при измерении получить +1, –1 или 0. Если мы при измерении получаем 0, это не значит, что частица не вращается, это означает просто, что ось ее вращения перпендикулярна оси, относительно которой мы измеряем спин. Но ни одно измерение никогда не даст 7/13 или какое-нибудь другое столь же нелепое значение – квантовая механика этого не позволяет.
Степени
Теперь мы должны провести различие между массивными частицами и безмассовыми (и посмотреть, как это будет связано с полем Хиггса). Оказывается, при измерении спина безмассовой частицы (с ненулевым спином), можно получить только два результата: плюс собственный спин или минус собственный спин. Другими словами, независимо от того, какую ось вы выбрали, при измерении спина безмассовой частицы со спином 1 (например, фотона), вы получите либо +1, либо –1, и никогда – ноль. Для частиц со спином 0 или 1/2 это ограничение не имеет значения, поскольку и так нет никаких промежуточных значений. Но для частиц с большими значениями спина оно важно. Когда мы измеряем спин фотона или гравитона, есть только два возможных значения, но когда мы измеряем спин W– или Z-бозона, существуют три различных значения, так как появляется еще одна возможность – получить при измерении 0. На рисунке выше темные (закрашенные) кружки представляют результаты измерений спина безмассовой частицы, в то время как спин массивной частицы дает нам любой из результатов, изображенных как темными, так и светлыми кружками.
Причина, почему этот факт столь важен, в том, что каждое из разрешенных спиновых измерений представляет собой новую «степень свободы». Если перейти с физического языка на обыденный, это означает, что «это событие может произойдет независимо от других происходящих событий». Поскольку мы на самом деле здесь говорим о квантовых полях, каждая степень свободы представляет собой определенный способ, в соответствии с которым поле может колебаться. Для поля со спином 0 – такого, как поле Хиггса – есть только один вид колебаний. Для поля со спином 1/2 – такого как поле электрона – может быть два вида колебаний, включающих в себя вращение по часовой стрелке или против часовой стрелки, какую бы ось ни выбрали. Безмассовая частица со спином 1 – такая как фотон – также имеет только два вида колебаний. А вот массивная частица со спином 1 – такая как Z-бозон – имеет уже три вида колебаний: по отношению к некоторой оси она может вращаться по часовой стрелке, против часовой стрелки или не вращаться вообще.
Все это похоже на полный бардак, но, вернувшись к обсуждению механизма Хиггса (глава 11), мы поймем, что происходит, когда спонтанно нарушается локальная симметрия. Помните, что в Стандартной модели мы начинаем (до нарушения симметрии) с трех безмассовых калибровочных бозонов и четырех скалярных бозонов Хиггса. Подсчитайте количество степеней свободы: по два для трех безмассовых калибровочных бозонов, по одному для скаляров, что даст 2 x 3 + 4 = 10. После нарушения симметрии три скалярных бозона «съедаются» калибровочными бозонами, которые становятся массивными, оставляя один массивный скаляр, который мы и считаем физическим бозоном Хиггса. Теперь подсчитаем число степеней свободы в этом случае: по три для каждого массивного калибровочного бозона, плюс один для оставшегося скалярного, что в сумме дает 3 x 3 + 1 = 10. Количество степеней свободы до нарушения симметрии и после совпадает. Спонтанное нарушение симметрии не создает новых и не уничтожает старые степени свободы, оно просто перемешивает их.
Подсчет степеней свободы помогает объяснить, почему калибровочные бозоны не имеют массы без поля Хиггса. Они существуют в первую очередь потому, что существует локальная симметрия – что-то делается независимо в каждой точке пространства, и мы должны определить поля, связывающие операции симметрии в различных точках. Можно показать, что для определения этого вида поля необходимы именно две степени свободы. (Поверьте мне на слово, трудно придумать разумное объяснение, не используя сложнейшую математику.) Когда у вас есть частица со спином 1 или 2 и всего лишь две степени свободы – эта частица обязательно безмассовая. Поле Хиггса – это совершенно независимая степень свободы. Когда она «поедается» калибровочными бозонами, те становятся массивными. Не будь поблизости никаких дополнительных степеней свободы, калибровочные бозоны неизбежно остались бы безмассовыми, и другие известные силы не помогли бы.
Надеюсь, вышеизложенное помогло вам понять, почему задолго до обнаружения поля Хиггса физики были так уверены, что нечто ему подобное обязательно должно существовать. В некотором смысле это нечто уже было обнаружено раньше – три из четырех скалярных бозонов: массивные W– и Z-бозоны с нулевым спином. Все, что оставалось сделать – найти четвертый.
Почему без поля Хиггса фермионы не обладают массой
Давайте посмотрим, почему в первую очередь требуется объяснить наличие массы у фермионов. Аргумент со степенями свободы, который мы использовали для калибровочных бозонов, тут не годится – у фермиона со спином 1/2 два возможных значения спина вне зависимости от того, есть у него масса или нет.
Птичка в академии, или Магистры тоже плачут
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
рейтинг книги
Офицер
1. Офицер
Фантастика:
боевая фантастика
рейтинг книги
Барон ненавидит правила
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Комендант некромантской общаги 2
2. Мир
Фантастика:
юмористическая фантастика
рейтинг книги
Леди Малиновой пустоши
Любовные романы:
любовно-фантастические романы
рейтинг книги
Возрождение Феникса. Том 2
2. Возрождение Феникса
Фантастика:
фэнтези
попаданцы
альтернативная история
рейтинг книги
И только смерть разлучит нас
Любовные романы:
любовно-фантастические романы
рейтинг книги
Собрание сочинений в пяти томах (шести книгах). Т.5. (кн. 1) Переводы зарубежной прозы.
Документальная литература:
военная документалистика
рейтинг книги
Адептус Астартес: Омнибус. Том I
Warhammer 40000
Фантастика:
боевая фантастика
рейтинг книги
