Чтение онлайн

на главную - закладки

Жанры

Чего не знает современная наука
Шрифт:

Истоки идеи о генерирующих потоках лежат не только в работах Николая Козырева, их можно увидеть, например, в учении даосизма о порождающих потоках или в концепции Ньютона, по существу субстанциональной, говорящей о времени как о мировом универсальном потоке, который существует сам по себе, не зависит ни от чего другого.

Основываясь на такого рода постулатах, можно проверять следствия метаболического подхода, которые позволяют уже содержательно обсуждать и проблемы течения времени, и проблемы становления, которые можно теперь описывать с помощью накапливания или убывания субстанций в системах. Это и решение проблемы открытости нашей Вселенной с избавлением от жупела тепловой смерти. Это возникновение некоего инструмента, образа или формального конструкта в теории, который

объединяет в себе и время, и материю, и взаимодействие, и движение.

Как ввести подобные концепции в научный и культурный обиход? Один путь – это измерение параметров генерирующих потоков, предъявление каких-либо наблюдаемых характеристик, отличных от его основного свойства – течения нашего времени. Однако возможности измерения слабых эффектов опираются не только на способности теоретиков, которые предсказывают наличие эффектов, но и на возможности всей цивилизации: как говорил Станислав Лем, необходима «сумма технологий», достигнутая всей цивилизацией. Вот пример из истории науки: атомистическое учение возникло несколько сотен (или тысяч) лет назад; тем не менее, первые экспериментальные результаты, связанные с опытами по диффузии, с молекулярной кинетической теорией, появились чуть больше ста лет назад. Великие физики Людвиг Больцман и Эрнст Мах еще сто с небольшим лет назад вполне серьезно спорили о том, существует ли атом, и Мах со свойственной ему прямотой называл чудачеством и дурачеством взгляды Больцмана на то, что атомы есть «на самом деле».

С момента, когда Мендель декларировал существование дискретных единиц наследственности, прошло сто или более лет, пока Уотсон и Крик с помощью рентгено-структурного анализа обнаружили спирали дезоксирибо-нуклеиновой кислоты. Возможно, и нынешняя цивилизация технологически еще не доросла до уровня, когда мы сумеем непосредственно измерять свойства генерирующих потоков.

Но есть и другой путь – все-таки измышлять гипотезы. То есть строить какие-то формальные теоретические конструкции и с помощью этих теорий объяснять реальные факты, предлагать в реализуемых областях эксперименты, которые могут эти теории подтвердить или опровергнуть. Это нормальный путь развития науки, и многие теории часто возникали до экспериментальной верификации, потому что, чтобы что-то обнаружить, надо знать, что мы ищем.

В рамках субстанционального подхода надо упомянуть о природе времени. Утверждается, что у него есть природный референт, на разных уровнях строения материи есть генерирующие потоки, которые «входят» в нашу Вселенную, пронизывают все системы, все объекты и порождают изменчивость. Эти взгляды позволяют ввести и измерение времени – параметризацию, или измерение изменчивости с помощью чисел. А именно, если время – это генеральный процесс, замена элементов, то следует подсчитывать меняющиеся в системе элементы. Когда мы говорим о времени, то имеем в виду по крайней мере три его ипостаси: это время-явление, когда говорим о природе времени, это время-понятие, когда время уже не реальность, а ноумен, то есть конструкт нашего мышления, и третье представление о времени – это измерение времени, время как часы, количественный аспект измерений. Метаболическая концепция позволяет ввести часы и измерять количество замен элементов, в этом случае можно корректно обсуждать свойства времени.

Теперь мы можем рассматривать мир как открытый, не изолированный, развивающийся. Принципу Гельвеция «Время – это зуб, который разжевывает железо и пирамиды, время – лишь смерть, которую оно приносит» можно противопоставить принцип Козырева, согласно которому в самих свойствах материи есть что-то, что порождает жизнь в обобщенном смысле, порождает изменчивость мира. И мир уже можно рассматривать как развивающийся, самоорганизующийся и, возможно, усложняющийся.

Фактически названы черты новой парадигмы:

– время может быть предметом естествознания, а не только философии;

– время имеет структуру, поэтому оно может быть предметом моделирования;

– в понятийной базе естествознания не хватает каких-то сущностей, и, возможно, они возникнут в рамках субстанциональных подходов;

– эталонные процессы, с помощью которых мы измеряем

время, могут быть разными, а не только основанными на физических измерениях. И вместе с новыми способами измерения изменчивости возникают новые подходы и к описанию мира.

Александр Левич, д-р биол. наук, МГУ

Фотосинтез

Свет – это вечно натянутая пружина, приводящая в действие механизм земной жизни.

Юлиус Роберт Майер

Превращение света в кислород. О нем рассказывают в школе, его тщательно изучают в институтах, над разгадкой его тайны вот уже не одно столетие бьются маститые ученые. Его «разложили по полочкам», ему «перемыли все косточки»… Но этот удивительный процесс по-прежнему остается «знакомым незнакомцем»…

Всем известна поговорка «Мы едим для того, чтобы жить…». Потребляемая нами пища – это источник энергии, благодаря которой мы можем двигаться, думать, творить, в общем – жить. А чтобы эту энергию из пищи извлечь, нам необходимо еще и дышать, ибо, образно говоря, пища сгорает в пламени кислорода и, сгорая, высвобождает нужную нам энергию. Таким образом, для производства энергии нам необходимы пища и кислород. Всего за один год человечество умудряется съесть более 7 x 108 млн. тонн. Но ведь потребность дышать и питаться испытывает и все остальное, более многочисленное население Земли. Значит, используемые запасы питательных веществ и кислорода должны непрерывно пополняться. И это действительно происходит – благодаря растениям с их удивительной способностью к фотосинтезу. За один год под действием света на Земле, по ориентировочным подсчетам, образуется 6 x 1011 млн. тонн органических веществ.

В природе царит закон целесообразности. И одной из ярких его иллюстраций служат «безотходные технологии», когда отработанные вещества одной живой системы автоматически становятся исходными соединениями для деятельности другой. Иначе это можно назвать круговоротом веществ в природе. Так происходит и с фотосинтезом. Ведь для производства питательных веществ и кислорода растения используют не что иное, как «отходы» жизнедеятельности всех живых существ, а именно: воду и углекислый газ.

Итак, роль фотосинтеза ясна. Теперь попытаемся разобраться с его замысловатым механизмом. Фотосинтез (от греч. photos «свет») – это образование сложных биологических молекул из простых химических соединений под действием света. В настоящее время принято выделять в этом процессе две стадии: световую (проходящую на свету) и темновую (которая для своего протекания непосредственно в освещении не нуждается). Темновые реакции это собственно синтез – цепочка последовательных химических превращений углекислого газа в сахара. Чтобы эти процессы происходили, нужна энергия. И не любая энергия, а именно та, которая будет «говорить» с реагирующими молекулами на их языке – языке химических превращений. Значит, прежде чем «запустить» синтез, необходимо уловить энергию света и трансформировать ее в движущую силу химических реакций. А это уже задача световой стадии фотосинтеза. Таким образом, связующим звеном обеих стадий служит так называемая химическая энергия (энергия химической связи), которая есть поглощенная и трансформированная энергия Солнца. А собственно акт трансформации энергии является главным событием фотосинтеза в целом.

«Местом действия» фотосинтеза служит растительная клетка (время действия, разумеется, – светлое время суток). Растительная клетка – это сложная живая система, она содержит ряд структур и выполняет множество функций. Некоторые процессы в клетке имеют строгую локализацию. Это относится и к фотосинтезу, а точнее, к стадии световых реакций. Процессы улавливания (поглощения), проведения и трансформации солнечной энергии происходят в специальных органеллах растительной клетки – хлоропластах. Поэтому хлоропласты можно еще назвать фототрансформаторами, фотогенераторами энергии. В клетках животных, к фотосинтезу неспособных, хлоропластов нет.

Поделиться:
Популярные книги

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Котенок. Книга 3

Федин Андрей Анатольевич
3. Котенок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Котенок. Книга 3

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Хозяин Теней 3

Петров Максим Николаевич
3. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Хозяин Теней 3

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

An ordinary sex life

Астердис
Любовные романы:
современные любовные романы
love action
5.00
рейтинг книги
An ordinary sex life

Господин следователь 6

Шалашов Евгений Васильевич
6. Господин следователь
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Господин следователь 6