Чем мир держится?
Шрифт:
Первыми в мире проверяли опыт Вебера в Московском университете. Это сделала группа Брагинского. Волн не приняли. Потом эксперимент повторяли в США и Англии, Италии и ФРГ… Эффект Вебера тоже не повторился.
Что же произошло?
По-видимому, установка Вебера не была достаточно защищена от внешнего «постороннего» воздействия. Во всяком случае обнаружено, что некоторые моменты, в которые антенна Вебера регистрировала приход волн, совпадают во времени с изменениями солнечной активности и магнитного поля Земли.
Первая атака оказалась неудачной, но она стала важным звеном планомерного штурма проблемы.
В том же 1971 году, когда Вебер закончил свои опыты, появилась в «Письмах в Журнал экспериментальной и теоретической физики»
Теоретики — тут большую роль играют советские ученые, группирующиеся вокруг академика Я. Б. Зельдовича, — стали рассчитывать, какие именно волны, какой длины и всплесками какой продолжительности должны приходить на Землю от гравитационных источников разного типа. Такие расчеты были проделаны, например, для шарового скопления, содержащего примерно миллиард сверхплотных звезд (пульсаров, черных дыр). Гравитационные волны должны были излучаться при пролете звезд на близком расстоянии друг от друга и при их столкновениях.
Для приема излучения от такого скопления надо настроить детектор на частоту сто герц (длина волны — три тысячи километров). При этом чувствительность гравитационной антенны должна быть достаточной, чтобы зарегистрировать амплитуду колебаний в десять в минус шестнадцатой степени сантиметра за одну сотую секунды.
Самые мощные из предполагаемых источников гравитационных волн — черные дыры с массою в миллион или миллиард солнечных масс. Точнее говоря, не сами дыры, а процессы их образования, если схлопывание звезд имеет несимметричный характер, если вещество звезды устремляется к центру ее неравномерно с разных сторон. Но черные дыры — все-таки гипотетические объекты. То же относится к процессам, при которых они образуются. Реальнее рассчитывать на волны, идущие от нейтронных звезд, масса которых не может быть намного больше солнечной.
Гравитационные антенны придется изолировать не только от сейсмических и акустических шумов, но и от магнитных воздействий любого типа, и, что труднее всего, от тепловых шумов. Тут надо будет работать при максимально низкой температуре, в гигантских холодильниках.
Большие возможности открывает космос.
Надо вынести две массы, составляющие гравитационную антенну, за пределы атмосферы — конечно, на спутниках. Желательно на спутниках, свободных от сноса. Здесь длину антенны, расстояние между пробными массами можно сделать сколь угодно большой — скажем, размером с радиус земной орбиты или еще больше.
Такая антенна будет предназначена для сверхдлинных гравитационных волн.
«Обычно экспериментаторы интуитивно отдают предпочтение лабораторным земным вариантам опыта по сравнению с космическими», — пишут по этому поводу В. Б. Брагинский и В. Н. Руденко.
Как ни велики надежды на космос, разрабатываются все новые наземные варианты антенн.
Так, в конце пятидесятых годов М. Е. Герценштейн указал вот еще на какую возможность. Свет и радиоволны, проходя через магнитное поле, должны порождать гравитационные волны. Причем эти волны имеют очень высокую частоту — ту же, что сами электромагнитные колебания, их породившие.
КПД превращения здесь значительно выше, чем в случае с механическими колебаниями. Например, энергия гравитационных волн, вызванных к жизни электромагнитным излучением звезд в межзвездных магнитных полях, должна быть меньше энергии электромагнитного излучения лишь в десять в шестнадцатой степени раз. Довольно «энергичны» должны быть и гравитационные волны, возбуждающиеся при проходе видимого и невидимого света через внутризвездное магнитное поле.
Во время термоядерных реакций в недрах звезд, в том числе и Солнца, постоянно возникает жесткое электромагнитное излучение. По дороге к поверхности звезды оно идет через ее магнитное поле — опять-таки появляются гравитационные волны.
То обстоятельство, что свет в магнитном поле может порождать гравитационные волны, открывает возможность создания их излучателя.
Тут появляется, в частности, — в очень далекой перспективе, конечно, — и возможность создания «гравитационного лазера». В обычных лазерах мы получаем очень узкие направленные пучки света. Гравитационные волны, порожденные таким лазером, тоже будут идти узким пучком. КПД превращения электромагнитных волн в гравитационные пропорционален квадрату напряженности магнитного поля и квадрату длины пути света в этом поле. Такая зависимость считается очень выгодной. Ведь каждый шаг вперед в усилении поля и увеличении его размеров дает эффект, возведенный в квадрат. Достаточно усилить напряженность поля в десять раз, и в сто раз большая доля энергии света перейдет в гравитационное излучение. А если при этом удастся в десять раз удлинить дорогу света через поле, то уже можно говорить в общей сложности о десятитысячекратном увеличении. Но десять тысяч — это только десять в четвертой степени. Немного рядом с величинами, характеризующими гравитационные волны.
Но это все-таки один из путей, открытых науке. А может быть, удастся найти физические процессы, которые надут гораздо больший КПД превращения света в волны тяготения?
Пока же ученые работают над использованием в гравитехнике уже известных процессов.
Сейчас появилось большое количество конкретных проектов гравитационных антенн на этой основе.
Л. П. Грищук и М. В. Сажин детально разработали проект излучателя, в котором колебания электромагнитного поля создают пучок гравитационных волн.
Казанские физики У. X. Копвиллем и В. Р. Нагибаров уже давно предложили идею создания своего рода гравитационного лазера, где должны складываться вместе излучения десяти секстильонов элементарных источников. К сожалению, идея пока недостаточно разработана даже в чисто теоретическом плане.
А. А. Соколов, Д. В. Гальцов и Ю. В. Грац предлагают использовать для генерации гравитационных волн движение электронов в плазме…
Новые типы механических приемников и излучателей предлагаются В. Б. Брагинским и В. Н. Руденко.