Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:
Если бы такого согласия удалось достигнуть, то возникшее в результате объединение общей теории относительности и квантовой теории дало бы новый набор мощных физических законов, названный физиками «квантовая гравитация». Однако понимание того, как «поженить» общую теорию относительности с квантовой теорией, в 1950-х годах было еще настолько примитивно, что, несмотря на приложенные весьма значительные усилия, никому не удалось добиться какого-либо прогресса.
Медленным было и продвижение в понимании фундаментальных строительных блоков атомных ядер — нейтронов, протонов, электронов и множества других элементарных частиц, полученных на ускорителях.
Уилером владела мечта — пробраться через все эти дебри и одним взглядом охватить природу квантовой гравитации и элементарных
6. Cхлопывается во что?
частиц.
Поэтому вполне в духе сказанного было то, что, вынырнув из проекта супербомбы, Уилер вместе с Гаррисоном и Вакано вскоре заполнил провалы в нашем знании о холодных мертвых звездах (глава 5); по этой же причине он задумался о конечной «судьбе гигантских масс». Здесь был заключен парадокс как раз такого типа, какой искал Уилер: никакая холодная мертвая звезда не может быть тяжелее примерно двух солнечных масс. И в то же время космос, кажется, изобилует гораздо более массивными тяжелыми звездами — звездами, которые когда-нибудь должны остыть и умереть. Оппенгеймер, в свойственной ему прямолинейной манере, спросил у известных физических законов: что происходит с такими звездами? И получил (совместно со Снайдером) ответ, весьма взбудораживший Уилера. Была подкреплена уверенность Уилера в том, что, разобравшись в судьбе гигантских масс, он сможет бросить взгляд за пределы физики XX века. Как мы увидим в главах 12 и 13, Уилер оказался прав.
В душе Уилера разгорелся огонь — непрерывное страстное желание понять судьбу больших гигантских масс и узнать, не поможет ли эта их судьба открыть загадку квантовой гравитации и элементарных частиц. Оппенгеймера же в 1958 г. все это, казалось, мало заботило. Он был уверен в своих совместных со Снайдером расчетах, но не выказывал желания продвигаться дальше, к более глубокому пониманию. Возможно, он устал от напряженных сражений предыдущих двух десятилетий: борьбы за создание нового оружия, политических и личных схваток. Может быть, был сыт загадками неведомого. В любом случае он больше уже не будет участвовать в получении ответов. Факел был передан новому поколению. Наследие Оппенгеймера станет основой для исследований Уилера, а в Советском Союзе наследие Ландау станет фундаментом для работы Зельдовича.
***
В брюссельском споре 1958 г. с Оппенгеймером Уилер утверждал, что расчетам Оппенгеймера—Снайдера нельзя доверять. Почему? Из-за слишком сильной идеализации. Конкретнее, Оппенгеймер изначально полагал, что схлопывающаяся звезда вообще не имеет давления. Без давления в схлопывающемся веществе звезды не могли образоваться ударные волны (аналог разбивающихся и пенящихся океанских волн).
При отсутствии давления и ударных волн схлопывающееся вещество не могло бы нагреться. Без тепла и давления не может начаться ядерная реакция и невозможно излучение. Без исходящего излучения, сбрасываемого в ядерных реакциях вещества, давления и ударных волн у звезды нет другого способа потерять свою массу. При изначальном запрете на потерю массы у тяжелой звезды не остается возможностей когда-нибудь уменьшить свою массу до двух солнечных и стать холодной мертвой нейтронной звездой. Не удивительно поэтому, что cхлопывающиеся звезды Оппенгеймера порождали черные дыры. Такая идеализация, как решил Уилер, и не позволила звездам сделать ничего больше рассчитанного!
В 1939 г., когда Оппенгеймер и Снайдер делали свою работу, было абсолютно безнадежно надеяться рассчитать во всех деталях cхлопывание с реальным давлением (термическое давление, давление вырождения и давление, порождаемое ядерными силами), с ядерными реакциями, ударными волнами, нагревом, излучением и выбросом массы. Однако за прошедшее двадцатилетие усилия, направленные на создание ядерного оружия, обеспечили ученых подходящими для этого инструментами. Давление, ядерные реакции, ударные волны, нагрев, излучение, выброс массы — все это является основными характеристиками водородной бомбы, без этого бомба не взорвется. Чтобы разработать водородную бомбу требовалось все это учесть в компьютерных вычислениях.
Группа Уилера, конечно, этим занималась. Поэтому теперь казалось совершенно
Опыт создания американской бомбы теперь сконцентрировался в Лос-Аламосе и новой правительственной лаборатории в Ливерморе (Калифорния). В Ливерморе в конце 1950-х Стирлинга Колгейта пленила проблема схлопывания звезд с образованием черной дыры. С одобрения Эдварда Теллера и в сотрудничестве с Ричардом Уайтом (а позднее с Майклом Мэем) Колгейт принялся за моделирование процесса схлопывания на компьютере. Модель Колгейта—Уайта—Мэя сохраняла часть идеализаций Оппенгеймера. Они взяли за основу предположение, что схлопывающаяся звезда является сферической и не вращается. Без этих ограничений расчеты были бы невообразимо более сложными. Однако их модель принимала в расчет все то, что волновало Уилера: давление, ядерные реакции, ударные волны, нагрев, излучение, выброс массы — и делала это основательно, опираясь на опыт разработки бомбы и машинные коды. Для отладки программ моделирования потребовалось несколько лет, но к началу 1960-х они уже хорошо работали.
Однажды в начале 1960-х годов Джон Уилер ворвался в аудиторию Принстонского университета, где он вел занятия по теории относительности и которые я, в то время аспирант, посещал. Он немного опоздал, но сиял от удовольствия. Уилер только что вернулся из поездки в Ливермор, где увидел результаты последних расчетов Колгейта, Уайта и Мэя. Взволнованно он чертил на доске диаграмму за диаграммой, объясняя то, что обнаружили его ливерморские друзья.
Если схлопывающаяся звезда имеет малую массу, то она вызывает взрыв сверхновой и формирует черную дыру именно так, как предполагал тридцатью годами ранее Цвикки. Когда масса звезды много больше максимума, равного 2 солнечным массам, схлопывание (несмотря на давление, ядерные реакции, ударные волны, нагрев и излучение) порождает черную дыру. Процесс рождения черной дыры замечательным образом совпадал с сильно идеализированной моделью, рассчитанной почти 25 лет назад Оппенгеймером и Снайдером. Наблюдаемое снаружи схлопывание замедляется и совершенно замораживается при критической длине окружности, но если наблюдать с поверхности звезды, никакого замораживания не происходит. Поверхность звезды непрерывно, без всяких отклонений продолжает сжиматься все дальше, проходя критический размер.
Фактически для Уилера это не явилось неожиданностью. Другие (о них речь пойдет позже) уже превратили его из критика черных дыр Оппенгеймера в их восторженного сторонника. Но здесь впервые появилось конкретное доказательство, полученное в ходе реалистичного компьютерного моделирования: схлопывание должно порождать черные дыры.
Был ли Оппенгеймер доволен подобным превращением, произошедшим с Уилером? Нет, он не проявлял особого интереса и не выказывал удовлетворения. На международной конференции в Далласе (Техас) в декабре 1963 г. по случаю открытия квазаров Уилер сделал большой доклад о схлопывании звезд. В нем он восторженно описал расчеты 1939 г. Оппенгеймера и Снайдера. Оппенгеймер присутствовал на конференции, но во время доклада Уилера сидел в холле на скамейке и болтал с друзьями на посторонние темы. Через 30 лет Уилер с грустью вспоминал об этом событии.
* * *
В конце 1950-х годов Зельдовичу начала надоедать его работа по разработке оружия. Большая часть интересных проблем уже была решена. В поиске новых задач, продолжая руководить командой разработчиков бомбы на «Объекте», а также другой группой, проводящей вспомогательные расчеты в Институте прикладной математики в Москве, он часть своего времени обращал сначала на теорию элементарных частиц, а затем на астрофизику. В работе по созданию бомб Зельдович «бомбардировал» свою команду идеями, а члены группы проводили вычисления, чтобы проверить, будут ли идеи работать. «Искры Зельдовича, бензин его группы», — так это описывал Гинзбург. Обратившись к астрофизике, Зельдович сохранил свой стиль.