Чтение онлайн

на главную - закладки

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

Если масса сжатого звездного ядра составляет, как верил Цвикки, величину порядка массы Солнца, то 10 % от нее, преобразованные в энергию взрыва, когда ядро становится нейтронной звездой, породят 1046 Дж, что близко к величине энергии, требуемой, по мнению Цвикки, для существования сверхновой. Энергия взрыва должна нагревать внешние слои звезды до огромных температур, выбрасывая их в межзвездное пространство (рис. 5.1), и поэтому во время взрыва звезда со столь высокой температурой будет ярко светиться, так же, как и идентифицированные Бааде сверхновые.

Цвикки не знал, что может инициировать сжатие звездного ядра в нейтронную звезду, не знал также, как будет вести себя звезда в процессе сжатия, и потому не мог оценить, сколько времени оно будет продолжаться (медленное ли это опадание или быстрое схлопывание). (Когда, наконец, в 60-х годах процесс сжатия ядра был детально проанализирован, оказалось, что он представляет

собой резкое схлопывание под действием гравитационных сил, заставляющих звезду размером, примерно равным размеру Земли, уменьшаться в окружности до 100 км менее чем за 10 с.) Кроме того, Цвикки точно не понимал, как именно энергия, высвобождающаяся в процессе сжатия звезды, может породить взрыв сверхновой, и почему продукты взрыва должны так ярко вспыхивать на несколько дней, и оставаться достаточно яркими еще несколько месяцев, а не секунд, часов или лет. Он, однако, знал (или думал, что знает), что при образовании нейтронной звезды высвобождается достаточно энергии, и это было все, чего он хотел.

5.1. Гипотеза Цвикки, объясняющая взрыв сверхновой: энергия взрыва высвобождается из-за схлопывания ядра звезды нормальной плотности до образования нейтронной звезды. Ядро звезды начинает схлопываться (слева). Схлопывание формирует нейтронную звезду и создает поток энергии во внешние слои звезды (в центре). Энергия, выделяемая в результате сброса внешних слоев звезды при вспышке сверхновой (справа)

Врезка 5.2

Эквивалентность массы и энергии

Согласно законам специальной теории относительности Эйнштейна, масса просто является очень компактной формой энергии. Возможно, хотя это совсем не тривиально, преобразовывать любую массу, включая массу человека, в энергию взрыва. Количество энергии, которое получается от такого преобразования, — огромно. Оно дается известной формулой Эйнштейна Е = Мс, где Е — энергия взрыва, М — масса, которая преобразуется в энергию, и с — = 2,99792x108 метров в секунду — скорость света. Эта формула предсказывает, что в 75 килограммах массы типичного человека заключена взрывчатая энергия равная 7x10 джоулей, что в тридцать раз больше энергии взрыва самой мощной водородной бомбы, которая когда-либо испытывалась.

Преобразование массы в тепло или в кинетическую энергию взрыва лежит в основе объяснения сверхновых звезд Цвикки (рис. 5.1), ядерного горения, поддерживающего жар Солнца (см. далее в этой главе), и ядерных взрывов (следующая глава).

Цвикки не мог удовлетвориться объяснением только сверхновых, он хотел объяснить все во Вселенной. Среди непонятых явлений, привлекавших в Калтехе в 1932–1933 гг. наибольшее внимание, были космические лучи — быстрые частицы, бомбардирующие Землю из космоса. Роберт Милликен из Калтеха был признанным мировым лидером в их исследовании и именно он дал им имя, а Карл Андерсон, также работавший в Калтехе, открыл, что некоторые частицы космических лучей построены из антивещества [67] . Цвикки, обожавший крайности, убедил себя (как оказалось, правильно), что космические лучи в основном приходят извне Солнечной системы и (это не так) даже извне нашей галактики Млечный Путь — из самых отдаленных пределов Вселенной, и уверился в том, что полная энергия, переносимая всеми космическими лучами во Вселенной (примерно так оно и есть), составляет величину порядка той, что высвобождается всеми сверхновыми Вселенной. Вывод был для Цвикки очевиден (и, возможно, правилен [68] ): космические лучи рождаются при взрывах сверхновых.

67

Антивещество называется так потому, что частицы из вещества и антивещества, сталкиваясь, взаимно аннигилируют (уничтожаются).

68

В действительности оказалось, что космические лучи образуются многими способами. До сих пор неизвестно, как именно получается большая часть космических лучей, но есть большая вероятность, что они являются результатом ускорения частиц в газовых туманностях, потомках взорвавшихся сверхновых. Если это так, то косвенным образом Цвикки оказался прав.

К концу 1933 г. Цвикки окончательно

убедил себя в существовании тесной связи между сверхновыми, нейтронами и космическими лучами. Поскольку энциклопедические познания Бааде в наблюдательной астрономии послужили основной базой для установления этих связей, и поскольку во многом расчеты и аргументы Цвикки родились в результате оживленных совместных дискуссий, Цвикки и Бааде договорились представить совместную работу на собрании Американского физического общества в Стэнфордском университете, который находится в одном дне приятной езды по побережью от Пасадины. Тезисы их доклада, опубликованные в журнале Physical Review 15 января 1934 г., воспроизведены на рис. 5.2. Это пример одного из самых провидческих документов в истории физики и астрономии. В нем уверенно заявляется о существовании сверхновых, как об определенном классе астрономических объектов, хотя адекватные прочные доказательства того, что они отличаются от обычных новых, будут получены Бааде и Цвикки лишь в 1938 г., четыре года спустя.

5.2. Тезисы доклада о сверхновых, нейтронных звездах и космических лучах, который Вальтер Бааде и Фриц Цвикки сделали в Стэнфордском университете в декабре 1933 г.

Для обозначения этих объектов впервые введен термин «сверхновые». Правильно оценена полная излучаемая ими энергия. Выдвинуто также предположение, что космические лучи образуются при взрыве сверхновых, — гипотеза, кажущаяся правдоподобной в 1994 г., но все еще строго не подтвержденная (см. сноску 3). Была представлена концепция нейтронной звезды, состоящей из нейтронов, — концепция, которая не была широко принята как теоретически плодотворная вплоть до 1939 г. и не была подкреплена наблюдениями вплоть до 1968 г. Введено само название нейтронная звезда для обозначения новой концепции. И «со всеми оговорками» (фраза, вероятно, вставленная по настоянию Бааде) высказывалось предположение, что сверхновые получаются при превращении обычных звезд в нейтронные звезды, — предположение, теоретическая жизнеспособность которого будет доказана только в начале 60-х годов и подтверждена наблюдениями лишь в конце 60-х с открытием пульсаров (вращающихся намагниченных нейтронных звезд) внутри газовых остатков взрывов древних сверхновых.

В 1930 г. астрономы с энтузиазмом откликнулись на концепцию сверхновых Бааде — Цвикки, но на идеи Цвикки относительно нейтронных звезд и космических лучей смотрели с некоторым пренебрежением.

Общее мнение сводилось к тому, что они «слишком умозрительны». К этому можно было бы обоснованно добавить — и «основываются на ненадежных расчетах». В публикациях и выступлениях Цвикки не содержалось ничего, кроме скупых намеков на то, что могло бы подкрепить его идеи. Фактически, как мне стало понятно после детального анализа работ Цвикки того периода, он недостаточно хорошо понимал законы физики, чтобы суметь доказать свои идеи. Позже я еще к этому вернусь.

* * *

В ретроспективе некоторые концепции в науке представляются настолько очевидными, что возникает недоумение, почему никто не обратил на них внимание раньше. Таковой представляется и связь нейтронных звезд с черными дырами. Цвикки мог бы установить такую связь еще в 1933 г., но он этого не сделал; первый намек появится лишь через шесть лет, а определенно взаимосвязь будет доказана только четверть века спустя. Изложению этого тернистого пути, в конце которого физики буквально уткнулись в существование такой связи, и будет в основном посвящена оставшаяся часть главы.

Чтобы лучше оценить рассказ о том, как физики пришли к пониманию связи «нейтронные звезды — черные дыры», полезно узнать кое-что об этой связи заранее. Поэтому сделаем некоторое отступление.

Какая судьба ожидает звезды после их смерти? Глава 4 дала частичный ответ, отраженный на правой половине рис. 5.3 (повторяющем рис. 4.4). Этот ответ зависел от того, была ли звезда тяжелее или легче, чем 1,4 солнечной массы (предельная масса Чандрасекара).

Если масса звезды меньше, чем предел Чандрасекара, например, если эта звезда — само Солнце, то в конце жизни она последует по пути, обозначенном на рис. 5.3 «смерть Солнца». Излучая энергию во внешнее пространство, звезда постепенно охлаждается, в результате уменьшается тепловое (обусловленное высокой температурой) давление. С уменьшением давления противодействие силам собственной гравитации становится больше невозможным, что заставляет звезду сжиматься. Сжимаясь, звезда движется влево на рис. 5.3 в направлении уменьшения размера, оставаясь на графике всегда на одной и той же высоте, поскольку ее масса не меняется. (Следует иметь в виду, что на графике масса отложена по вертикальной оси, а длина окружности увеличивается вправо, по горизонтальной оси.)

Поделиться:
Популярные книги

Землянка для двух нагов

Софи Ирен
Фантастика:
космическая фантастика
5.00
рейтинг книги
Землянка для двух нагов

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход

Случайная жена для лорда Дракона

Волконская Оксана
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Случайная жена для лорда Дракона

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Интернет-журнал "Домашняя лаборатория", 2007 №6

Журнал «Домашняя лаборатория»
Дом и Семья:
хобби и ремесла
сделай сам
5.00
рейтинг книги
Интернет-журнал Домашняя лаборатория, 2007 №6

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Гримуар темного лорда IX

Грехов Тимофей
9. Гримуар темного лорда
Фантастика:
попаданцы
альтернативная история
аниме
фэнтези
5.00
рейтинг книги
Гримуар темного лорда IX

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Контрактер Душ

Шмаков Алексей Семенович
1. Контрактер Душ
Фантастика:
фэнтези
попаданцы
аниме
5.20
рейтинг книги
Контрактер Душ

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Неудержимый. Книга XX

Боярский Андрей
20. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XX

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма