Чтение онлайн

на главную - закладки

Жанры

Черный лебедь. Под знаком непредсказуемости
Шрифт:

жил ошибку в вычислениях. Однако выяснилось, что, если ее поправить, выводы получаются прямо противоположными: система непредсказуема (если использовать математический термин — неинтегрируема). Публикацию благоразумно задержали, статья — исправленная — вышла через год.

Аргументация Пуанкаре была проста: при предсказании будущего динамику рассматриваемого процесса нужно моделировать со все возрастающей точностью, так как предел погрешности очень быстро возрастает. Проблема в том, что необходимая точность невозможна: "размытость" вашего прогноза внезапно достигает апогея — наступает момент, когда от вас требуется бесконечно точное знание прошлого. Пуанкаре продемонстрировал это на очень наглядном примере, известном как

задача трех тел. Если в системе, устроенной по принципу Солнечной, имеется только две планеты и на их орбиты более ничто не влияет, то вы без всяких хлопот сможете предсказывать поведение этих планет. Но поместите между ними третье небесное тело, пусть даже малюсенькую комету. Сначала движение этого третьего тела никак не сказывается на двух других телах, а потом вдруг раз — и его воздействие уподобляется мощному взрыву. Малейшие перемены в расположении этого крохотного тела в конце концов предопределят будущее планет-левиафанов.

И чем мудреней механика, тем труднее предсказывать такие "взрывы". Наш мир, к сожалению, намного сложнее, чем задача трех тел: в нем не три объекта, а гораздо больше. Тут мы имеем дело с тем, что нынче называется динамической системой, а мир, как мы видим, — система весьма динамическая.

Вообразите, что будущее — это ствол с ветвями, каждая из которых образует развилки с множеством ответвлений. Чтобы представить, как пасует наша интуиция перед этими

10-10770

289

множащимися нелинейными эффектами, вспомните знаменитую притчу о шахматной доске. Изобретатель шахмат попросил следующую награду: одно зернышко риса на первую клетку, два на вторую, четыре на третью, потом восемь, шестнадцать и так далее, каждый раз (всего шестьдесят четыре раза) удваивая количество. Правитель сразу согласился исполнить столь ничтожную просьбу, но вскоре понял, что его перехитрили. Обещанное количество риса превысило бы все мыслимые запасы!

Эта мультипликативная сложность, требующая для прогнозирования все большей и большей точности исходных данных, может быть проиллюстрирована следующим простым упражнением: предсказанием передвижения бильярдного шара по столу. (Я использую в этом примере расчеты, выполненные математиком Майклом Берри.) Если вы знаете все основные параметры покоящегося шара, можете рассчитать сопротивление поверхности стола (это элементарно) и силу удара, то довольно просто определите, что случится при первом столкновении. Предсказать последствия второго удара будет труднее, но тоже возможно: придется лишь уточнить уже измеренные параметры. Но чем дальше, тем хуже: для корректного расчета девятого удара нужно учесть гравитационное воздействие тела, находящегося возле стола (по скромным прикидкам Берри, в этом теле менее 70 килограммов). А для расчета пятьдесят шестого удара в ваших вычислениях должны будут присутствовать все элементарные частицы Вселенной. Электрон на краю Вселенной, отделенный от нас ю миллиардами световых лет, может оказать значимый эффект на результат. Помните о дополнительной трудности: нужно также принять во внимание все прогнозы относительно местоположения этих переменных в будущем. Чтобы предсказать движение бильярдного шара по столу,

нужно знать динамику всей Вселенной, каждого атома! Мы можем легко предсказать траектории крупных объектов, скажем, планет (хотя на довольно малом отрезке времени), но для объектов поменьше их уже так просто не рассчитаешь — а этих объектов неизмеримо больше, чем крупных.

Заметьте, что в примере с бильярдными шарами мы имели в виду некий абстрактный мир, простой и понятный, без социальных безумств, которые творятся иногда совершенно произвольно. У бильярдных шаров нет разума. В примере также не учитываются квантовый эффект и эффект относительности. Мы не использовали и понятие (к которому часто обращаются шарлатаны) "принцип неопределенности". Нас

не волнует, что на субатомном уровне точность измерений крайне ограниченна.

Мы занимаемся исключительно самими бильярдными шарами!

При наличии динамической системы, где помимо одного-единственного шара имеются и другие объекты, где траектории до некоторой степени зависят друг от друга, возможность предсказывать будущее не просто уменьшается — она становится предельно ограниченной. Пуанкаре предложил работать только с качественными, а не с количественными величинами: обсуждать некоторые свойства систем, но не просчитывать их. Можно точно мыслить, но нельзя использовать числа. Пуанкаре даже придумал для этого специальный метод — анализ in situ*, воспринятый топологией. Предсказание и прогнозирование — дело куда более сложное, чем обычно считают, но, чтобы понять это, нужно знать математику. А чтобы принять это, нужно и понимание и мужество.

В 1960-х метеоролог Эдвард Лоренц из Массачусетского технологического института самостоятельно повторил открытие Пуанкаре — опять же случайно. Он работал над компьютерной программой погоды, моделируя ее динамику на несколько дней вперед. Как-то он попытался воспроизвести ту же модель, введя те же, как ему казалось, исходные параметры, но получил совершенно иные результаты. Сначала он решил, что дело в компьютерном сбое или ошибке вычисления. Первые компьютеры были чудовищно громоздкими, работали медленно, не то что нынешние, поэтому их пользователи всегда искали способ их "поторопить". Лоренц быстро сообразил, что столь значительные расхождения в результатах произошли из-за того, что ради упрощения задачи он несколько округлил исходные параметры. Это явление было

* На месте (лат.).

названо "эффектом бабочки": взмах крыльев индийской бабочки может два года спустя вызвать ураган в Нью-Йорке. Открытие Лоренца пробудило интерес к "теории хаоса".

Разумеется, исследователи обнаружили, что открытие Лоренца было предвосхищено трудами не только Пуанкаре, но и прозорливого интуитивиста Жака Адамара, который размышлял о тех же проблемах примерно в 1898 году, а потом прожил еще почти семь десятилетий и умер в возрасте 98 лет*.

Хайека по-прежнему игнорируют

Открытия Поппера и Пуанкаре показывают, насколько ограниченны наши возможности предвидеть будущее. Оно оказывается очень сложным отражением прошлого — а то и не отражением вовсе.

Друг сэра Карла Поппера, экономист-интуитивист Фридрих Хайек очень эффективно применил эти знания к общественным наукам. Хайек—один из тех редких прославленных представителей своей "профессии" (вместе с Дж.М. Кейнсом и ДжЛ.С. Шэклом), кто концентрировался на истинной неопределенности, на ограничениях знания, на непрочтенных книгах в библиотеке Эко.

В1974 году он получил премию Шведского государственного банка по экономическим наукам памяти Альфреда Нобеля, но если вы прочтете его нобелевскую речь, то будете несколько удивлены. В этой лекции с красноречивым названием "Претензии знания" Хайек в основном бранил других экономистов и критиковал идею планирования. Он заявил, что нельзя использовать инструменты естественных наук в науках общественных. К сожалению, очень скоро начался настоящий бум

* Есть и другие ограничения, которые я даже не пытаюсь здесь рассматривать. Я обхожу молчанием тот класс невычислимости, который принято называть NP-полнотой.

как раз методов "естественников" в экономике. Заковыристые уравнения невероятно усложняли жизнь истинных мыслителей-эмпириков, она стала даже еще более тяжкой, чем до знаменитой речи Хайека. Каждый год в какой-нибудь статье или книге оплакивают судьбу экономики и сетуют на ее потуги подражать физике. В самой недавней из прочитанных мной статей на эту тему говорилось, что экономистам куда больше пристала роль скромных философов, чем верховных жрецов. Но что толку? В одно ухо влетело — в другое вылетело.

Поделиться:
Популярные книги

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Неудержимый. Книга V

Боярский Андрей
5. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга V

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Гибель титанов. Часть 2

Чайка Дмитрий
14. Третий Рим
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гибель титанов. Часть 2

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Росток

Ланцов Михаил Алексеевич
2. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
7.00
рейтинг книги
Росток

Королевская кровь-13. Часть 1

Котова Ирина Владимировна
14. Королевская кровь
Фантастика:
городское фэнтези
фэнтези
эпическая фантастика
5.00
рейтинг книги
Королевская кровь-13. Часть 1

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Огненный князь 3

Машуков Тимур
3. Багряный восход
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Огненный князь 3

Гибель титанов. Часть 1

Чайка Дмитрий
13. Третий Рим
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Гибель титанов. Часть 1

Воронцов. Перезагрузка. Книга 2

Тарасов Ник
2. Воронцов. Перезагрузка
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Воронцов. Перезагрузка. Книга 2