Чтение онлайн

на главную - закладки

Жанры

? – Число Бога. Золотое сечение – формула мироздания
Шрифт:

Еще одна удивительная деталь в истории с квазикристаллами – это личности двух теоретиков, которые их исследовали. И Пенроуз, и Стейнхард по большей части занимались космологией, изучали Вселенную в целом. Пенроуз – это тот самый ученый, который обнаружил, что общая теория относительности Эйнштейна предсказывает свои собственные особые точки, где сила тяжести становится бесконечной. Эти математические сингулярности соответствуют космическим объектам, которые мы называем черными дырами – объектам столь огромной массы, что она сжимается до неимоверной плотности и ее гравитации становится достаточно, чтобы не выпускать из черной дыры ни свет, ни массу, ни энергию. В последние четверть века наблюдения показали, что черные дыры – отнюдь

не воображаемая теоретическая концепция, а самые что ни на есть реальные космические объекты. Недавние наблюдения двух крупных космических обсерваторий – космического телескопа им. Хаббла и рентгеновской обсерватории «Чандра» – показали, что черные дыры даже не так уж редки. Более того, в центре большинства галактик таятся исполинские черные дыры с массой от нескольких миллионов до нескольких миллиардов масс нашего Солнца. Наличие черных дыр определяется по гравитационному воздействию, которое они оказывают на звезды и газ, расположенные по соседству. Согласно общепринятой теории Большого Взрыва, которая описывает происхождение всей нашей Вселенной, мироздание в целом начало расширяться именно с такой сингулярности – с состояния необычайно высокой плотности и температуры. Пол Стейнхардт был одним из главных действующих лиц при разработке так называемой инфляционной модели Вселенной. Согласно этой модели, которую первым предложил физик Алан Харви Гут из Массачусетского технологического института, когда возраст Вселенной составлял всего крошечную долю секунды (если точно, то 0,000…1 с, где 1 стоит на 35 месте после запятой), она претерпела фантастически стремительное расширение, увеличившись в размере более чем в 1030 раз (это единица с 30 нулями) за долю секунды. Эта модель объясняет несколько свойств нашей Вселенной, которые иначе объяснить было бы затруднительно, например, тот факт, что она практически одинаково выглядит, куда ни посмотри, то есть исключительно изотропна.

В 2001 году Стейнхардт и его коллеги предложили новую версию зарождения Вселенной; эта модель получила название «экпиротический сценарий», от греческого слова, которое означает «внезапная вспышка пламени». Согласно этой модели, которая на сегодняшний день остается во многом спекулятивной, Большой Взрыв произошел, когда столкнулись две трехмерные Вселенные, двигавшиеся по какому-то другому, скрытому измерению.

Так вот, интересный вопрос: почему эти два выдающихся космолога решили побаловаться занимательной математикой – и перешли к квазикристаллам?

Я знаком с Пенроузом и Стейнхардтом уже много лет, поскольку занимаюсь тем же делом – космологией и теоретической астрофизикой. Более того, в 1984 году Пенроуз получил приглашение выступить на первой крупной конференции по релятивистской астрофизике, которую я организовывал, а Стейнхардт – на последней, в 2001 году. И тем не менее, я не знал, что подтолкнуло их к тому, чтобы углубиться в дебри занимательной математики: казалось бы, эта область довольно далека от их профессиональных интересов в астрофизике. Поэтому я спросил у них об этом.

Роджер Пенроуз ответил:

– Не уверен, что дам на этот вопрос сколько-нибудь глубокий ответ. Как вам известно, математика – занятие, которому большинство математиков предается ради удовольствия. – И, немного поразмыслив, добавил: – Я с детства любил подгонять геометрические фигуры друг к другу, так что исследования мозаик опередили исследования по космологии. Однако в какой-то момент изыскания в области занимательной математики были, по крайней мере, отчасти, связаны с космологическими исследованиями. Я размышлял о крупномасштабной структуре Вселенной и искал игрушечные модели, построенные по простым правилам, которые, тем не менее в крупном масштабе были бы способны породить сложные структуры.

– Но что же заставило вас так долго работать над этой задачей? – спросил я тогда.

– Как вы знаете, меня всегда интересовала геометрия, –

со смехом ответил Пенроуз, – так что мне было просто интересно разобраться в этой задаче. Более того, хотя у меня было подозрение, что подобные структуры могут встречаться в природе, я не понимал, как природа могла бы создать их посредством нормального процесса кристаллического роста, локального процесса. В некотором смысле я до сих пор этого не понимаю.

А Пол Стейнхардт на мой вопрос по телефону тут же воскликнул:

– Хороший вопрос!

А затем, подумав несколько минут, рассказал:

– Когда я был студентом-старшекурсником, то не вполне представлял себе, чем хочу заниматься. Затем, уже в аспирантуре, я день и ночь ломал себе голову над физикой частиц, и мне нужно было найти какую-то отдушину – вот и я стал для развлечения исследовать тему порядка и симметрии твердых тел. А стоило мне натолкнуться на проблему квазипериодических кристаллов, как я понял, что это непреодолимое искушение, и с тех пор то и дело возвращался к ней.

Фракталы

Модель квазикристаллов Стейнхардта-Джуна обладает одним интересным свойством: она создает дальний порядок из взаимодействий соседних элементов, однако полностью периодический кристалл при этом не получается. Невероятно, но факт: в общем и целом это же свойство мы обнаруживаем у чисел Фибоначчи. Рассмотрим простой алгоритм, позволяющий создать последовательность, получившую название золотой последовательности. Начнем с числа 1, затем заменим 1 на 10. Теперь будем заменять все 1 на 10, а все 0 на 1. Тогда у нас получатся следующие этапы:

1

10

101

10110

10110101

1011010110110

101101011011010110101

И так далее. Очевидно, что мы начали с «ближнего» правила (простое превращение 0 в 1 и 1 в 10), а получили непериодический «дальний порядок». Обратите внимание, что количество цифр 1 в каждой строчке составляет 1, 1, 2, 3, 5, 8. ., то есть числа Фибоначчи, как и количество цифр 0, начиная со второй строчки. Более того, отношение числа единиц к числу 0 по мере удлинения последовательности становится все ближе к . Далее, изучение рис. 27 показывает, что если обозначить новорожденную пару крольчат 0, а взрослую пару 1, то количество пар кроликов будет в точности повторять только что приведенную последовательность. Однако неожиданные свойства золотой последовательности этим не исчерпываются. Если начать с 1 (в первой строчке), за которым следует 10 (вторая строчка) и попросту приписывать к каждой строчке непосредственно предшествующую, тоже получится цельная последовательность. То есть четвертая строчка 10110 получается, если приписать вторую – 10 – к третьей – 101, и т. д.

Вспомним, что самоподобие означает симметрию при любом масштабе. Логарифмическая спираль обладает самоподобием, поскольку, как ее ни увеличивай, выглядит всегда одинаково, как и череда вписанных друг в друга правильных пятиугольников и пентаграмм на рис. 10. Каждый раз, когда вы приходите в парикмахерскую, вы видите бесконечную череду собственных самоподобных отражений в двух параллельных зеркалах.

Так вот, золотая последовательность тоже самоподобна при любом масштабе. Возьмем последовательность

1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1…

И посмотрим на нее в лупу – конечно, не в буквальном смысле слова. Начнем слева и каждый раз, когда нам встретится 1, будем помечать группу из трех символов, а когда нам встретится 0 – группу из двух символов, только так, чтобы группы не перекрывались. Например, первая цифра у нас 1, поэтому мы отметим группу из первых трех символов – 101 (см. ниже). Вторая цифра в ряду у нас 0, поэтому мы отметим группу из двух символов 10, следующую за первой группой 101. Третья цифра – 1, значит, отмечаем три цифры 101, которые следуют за 10, и т. д. Теперь размеченная последовательность выглядит так:

Поделиться:
Популярные книги

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Королевская Академия Магии. Неестественный Отбор

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Королевская Академия Магии. Неестественный Отбор

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода