Что такое теория относительности. 3-е, дополненное издание
Шрифт:
Ведь в данном случае — при равномерном и прямолинейном перемещении поезда относительно станции — мы вправе считать поезд неподвижным, а станцию передвигающейся. Законы природы в них должны быть одинаковы.
Каждый наблюдатель, неподвижный относительно своих часов, увидит, что спешат другие часы, перемещающиеся относительно него, и забегают вперед тем больше, чем с большей скоростью они движутся.
Это положение совершенно аналогично тому, что каждый из двух наблюдателей, стоящих у телеграфных столбов, стал бы утверждать, что его столб виден под большим углом, чем столб другого.
Машина
Представим себе теперь, что поезд Эйнштейна движется не по магистрали, а по окружной железной дороге, возвращаясь через определенное время снова к станции отправления. Как мы уже установили, пассажир при этом обнаружит, что его часы отстают и отстают тем больше, чем быстрее движется поезд. Увеличивая скорость поезда Эйнштейна на окружной железной дороге, можно достигнуть такого положения, что за то время, как для пассажира пройдет всего-навсего один день, для начальника станции пройдет много лет. Вернувшись (по своим часам!) через день домой на станцию отправления окружной дороги, наш пассажир узнает, что все его родные и знакомые давно уже умерли.
В отличие от путешествия между двумя станциями, когда пассажир проверяет свои часы по разным часам, здесь, при круговом маршруте, сравниваются показания уже не трех часов, а всего лишь двух: часов в поезде и часов на станции отправления.
Нет ли здесь противоречия с принципом относительности? Можно ли считать, что пассажир находится в покое, а станция отправления движется по окружности со скоростью поезда Эйнштейна? Ведь тогда мы пришли бы к выводу, что для людей на станции пройдет один день, в то время как для пассажиров пройдет много лет. Такое рассуждение, однако, было бы неверным, и вот почему.
В свое время мы выяснили, что можно считать покоящимся лишь такое тело, на которое не действуют никакие силы. Правда, существует не один, а бесчисленное множество «покоев», и два покоящихся тела могут, как мы знаем, двигаться относительно друг друга прямолинейно и равномерно. Но на часы в поезде Эйнштейна, мчащегося по окружной дороге, заведомо действует центробежная сила, и мы поэтому ни в коем случае не можем их считать покоящимися. В этом случае разница между показаниями покоящихся станционных часов и часов в поезде Эйнштейна является абсолютной.
Если два человека с часами, показывавшими одно и то же время, разошлись и через некоторое время встретились вновь, то большее время покажут часы того из них, который покоился или двигался равномерно и прямолинейно, то есть те часы, на которые не действовали никакие силы.
Поездка по окружной железной дороге со скоростью, близкой к скорости света, дает нам принципиальную возможность хотя бы в ограниченной степени осуществить «машину времени» Уэллса: выйдя снова на станции отправления, мы обнаружим, что попали в будущее. Правда, на этой машине времени мы можем отправиться в будущее, но лишены возможности вернуться в прошлое. И в этом; ее большое отличие от машины времени Уэллса.
Напрасно даже надеяться на то, что дальнейшее развитие науки позволит нам путешествовать в прошлое. Иначе пришлось бы признать принципиально возможными нелепейшие ситуации. В самом деле, отправившись в прошлое, можно было бы очутиться в абсурдном положении человека, родители которого еще не появились на свет. Путешествия же в будущее таят в себе лишь кажущиеся противоречия.
Путешествие на звезду
На небе есть звезды, расположенные от нас, например,
Предположим, что мы летим на звезду в ракете Эйнштейна со скоростью в 240000 километров в секунду. Для жителей Земли мы достигнем звезды через (300 000 X 40) / 240 000 = 50 лет.
Для нас же, летящих в ракете Эйнштейна, это время сократится при упомянутой скорости полета в отношении 10:6. Следовательно, мы достигнем звезды не через 50 лет, а через (6 / 10) X 50 = 30 лет.
Увеличивая скорость ракеты Эйнштейна, приближая ее к скорости света, можно сколько угодно сокращать время, которое понадобится путешественникам, чтобы добраться до столь отдаленной звезды. Теоретически при достаточно быстром полете можно было бы достичь звезды и вернуться обратно на Землю хоть за одну минуту! На Земле, однако, при этом все равно пройдет 80 лет.
Может показаться, что этим открываются возможности для продления человеческой жизни. Правда, лишь с точки зрения других людей, потому что человек стареет в соответствии со «своим» временем. Однако, к сожалению, эти перспективы при ближайшем рассмотрении оказываются более чем мизерными.
Начать с того, что человеческий организм не приспособлен к пребыванию в условиях длительного ускорения, заметно превышающего земное ускорение силы тяжести. Поэтому, чтобы разогнаться до скорости, приближающейся к световой, требуется весьма длительное время. Расчеты показывают, что при полугодовом путешествии и ускорении, равном земному ускорению силы тяжести, можно выиграть всего полтора месяца. Если такое путешествие продлить, выигрыш во времени будет быстро возрастать. Летя в ракете год, можно дополнительно выиграть еще полтора года, двухлетнее путешествие даст нам 28 лет, а за три года нашего пребывания в ракете на Земле пройдет более 360 лет!
Цифры, казалось бы, довольно утешительные.
Хуже обстоит с затратами энергии. Энергия движущейся ракеты, вес которой предельно скромен — 1 тонна, при полете со скоростью 260 000 километров в секунду (такая скорость необходима для «удвоения» времени, то есть для того, чтобы за каждый год путешествия в ракете на Земле проходило два года) равна 250 000 000 000 000 киловатт-часов. Столько энергии вырабатывается на всем земном шаре за много лет.
Однако мы вычислили лишь энергию ракеты в полете. Нами не учтено, что предварительно требуется еще разогнать наш летательный аппарат до скорости 260 000 километров в секунду! А по окончании путешествия ракету придется затормозить, чтобы можно было безопасно приземлиться. Сколько на это пойдет энергии?
Даже если бы в нашем распоряжении было топливо, дающее струю, которая вытекает из реактивного двигателя с самой большой из возможных скоростей — со скоростью света, то и тогда эта энергия должна была бы в 200 раз превышать количество, подсчитанное выше. То есть нам пришлось бы израсходовать столько энергии, сколько производит человечество за несколько десятилетий. Действительная же скорость выброса струи из двигателей ракеты в десятки тысяч раз меньше скорости света. И это делает потребные затраты энергии на предпринятый нами мысленно полет невероятно большими.