Цифровая трансформация государственного управления. Датацентричность и семантическая интероперабельность
Шрифт:
Формально в ГОСТ Р 57193–2016 [15н] процесс (process) определен как совокупность взаимосвязанных или взаимодействующих видов деятельности, преобразующих входы в выходы. При этом выделены 148 4 группы процессов жизненного цикла:
• процессы соглашения (Agreement Processes);
• процессы организационного обеспечения проекта (Organizational Project-Enabling Processes);
• процессы проекта (Technical Management Processes);
148
Указанная классификация характерна для ГОСТ Р 57193-2016. Такие организации, как NASA, SAE, EIA и другие используют свои классификации процессов жизненного цикла.
•
Процессы жизненного цикла системы в стандарте ГОСТ Р 571932016 описаны относительно системы, которая составлена из ряда системных элементов для взаимодействия, каждый из которых может быть реализован таким образом, чтобы выполнить соответствующие ему заданные требования.
Следующие положения являются основными относительно характеристик рассматриваемой системы:
a) определенные границы характеризуют значимые потребности и практические решения;
b) существуют иерархические или иные отношения между системными элементами;
c) какая-либо сущность на любом уровне в рассматриваемой системе может быть рассмотрена как система;
d) система включает интегрированное, определенное множество нижестоящих системных элементов;
e) свойства характеристик в границах системы определяются результатами взаимодействий между системными элементами;
f) люди могут рассматриваться как пользователи внешние к системе и как системные элементы (т. е. операторы) в пределах системы;
g) система может быть рассмотрена в изоляции как некая сущность, например, как продукт или набор функций, способных к взаимодействию с окружающей средой, т. е. как множество услуг.
Концепциям, принципам и методам системной инженерии посвящено значительное количество работ 149 , которые, безусловно, оказали большое влияние на ее развитие. Хотя рассмотрение оснований системной инженерии выходит далеко за пределы монографии, следует обратить внимание на то, что в современной «системной инженерии рассматриваются не любые, а именно большие (крупномасштабные) и сложные системы. Общепризнанной границы, разделяющей большие и сложные системы, нет. Однако отмечается, что термин „большая система“ характеризует многокомпонентные системы, включающие значительное число элементов с однотипными многоуровневыми связями. Большие системы – это пространственно-распределенные системы высокой степени сложности, в которых подсистемы (их составные части) также относятся к категориям сложных. <…> В свою очередь, термин „сложная система“ характеризует структурно и функционально сложные многокомпонентные системы с большим числом взаимосвязанных и взаимодействующих элементов различного типа и с многочисленными и разнородными связями между ними. Сложные системы отличаются многомерностью, разнородностью структуры, многообразием природы элементов и связей, организационной разносопротивляемостью и разночувствительностью к воздействиям, асимметричностью потенциальных возможностей осуществления функциональных и дисфункциональных изменений. При этом каждый из элементов подобной системы может быть также представлен в виде системы (подсистемы)» [55].
149
Обзорный доклад по этим вопросам был сделан 11.02. 2015 года профессором В.К. Батовриным на 100-м заседании INCOSE RUS,Там же можно найти список литературы.
Такой подход к рассмотрению систем как совокупности иерархически организованных систем (подсистем) хорошо исследован в теории систем [64] и широко используется в практике проектирования. При этом отмечается, что большие технические системы «с иерархической структурой являются многоуровневыми многокритериальными системами, обладающими сложным (с наличием неопределенности) поведением, и характеризуются усложнением постановки и решения оптимизационных задач» [71].
Проблема сложности является ключевой для системной инженерии и теории систем. Ее исследование началось в середине 60-х годов [57, 66], а к 80-м годам «сложилась специальная научная дисциплина, названная теорией сложности. В 1984 году был основан Институт Санта Фе в Нью-Мексико, а двумя годами позже – Центр изучения сложных систем в университете штата Иллинойс» [72]. Интеграция гетерогенных сложных систем приводит к образованию систем с труднопредсказуемым поведением и неожиданными свойствами,
Группы систем, в которых отдельные системы могут существовать автономно – поскольку были разработаны и функционируют независимо друг от друга – и при этом представлять собой полноценную целевую систему, получили название система систем (System of Systems, SoS). Основой для исследований в области SoS являются принципы системной инженерии. Однако ряд существенных особенностей SoS привел к возникновению новой области системной инженерии, которая должна обеспечить управление жизненным циклом системы систем, при том, что каждая составляющая система SoS может находиться на своей стадии жизненного цикла.
Исследования свойств SoS c 1970-x годов [1] проводились индивидуальными исследователями до начала 2000-х годов, когда системы систем стали предметом серьезного внимания ведущих исследовательских организаций [19]. В период 2008–2009 гг. в различных работах, например [33], был представлен ряд определений SoS, не все из которых были положительно приняты мировым сообществом. Современное определение SoS, объединившее более ранние определения различных авторов, дано в глоссарии SEBoK 150 :
150
http://www.sebokwiki.org/wiki/System_of_Systems_(SoS)_(glossary)
«SoS – это интеграция конечного числа составляющих систем, которые являются независимыми и функционирующими, объединенных в сеть на определенный период времени для достижения определенной высшей цели».
А на десять лет раньше, в 1998 году, были сформулированы [37] базовые характеристики SoS:
1) эксплуатационная независимость отдельных систем – SoS состоит из систем, интегрированных в SoS, независимых и пригодных к работе по отдельности;
2) административная независимость отдельных систем – системы, составляющие SoS, работают независимо ради достижения поставленных перед ними целей, которые могут отличаться от назначенных SoS;
3) территориальная распределенность – системы, входящие в состав SoS, могут находиться далеко друг от друга и обмениваться между собой только информацией;
4) эмерджентное 151 поведение – ожидание синергетического эффекта является главной причиной объединения отдельных независимых систем. SoS может создаваться для осуществления цели и выполнения функций, не обязательно свойственных какой-либо из входящих в ее состав систем;
151
Эмерджентность в теории систем – наличие у какой-либо системы особых свойств, не присущих ее подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств ее компонентов; синоним – «системный эффект», http://ru.wikipedia.org/wiki/Эмерджентность
5) эволюционное развитие – входящие в состав SoS системы, их компоненты, структуры, функции и цели изменяются по мере накопления опыта работы с системой.
Причем эксплуатационная и административная независимость определены как две основные отличительные характеристики для применения термина «система систем». Система, которая не проявляет этих двух характеристик, не считается SoS вне зависимости от сложности и географического распределения ее компонентов. Многие авторы [19] объединяют эти две характеристики, говоря об автономности как способности составляющих SoS систем делать независимый выбор, включая административную и эксплуатационную независимость. При этом эмерджентность также рассматривается как неотъемлемая характеристика SoS, ради которой, собственно, и объединяются составляющие системы. Однако SoS могут проявлять не только предсказуемую эмерджентность: в силу автономности составляющих систем возможно возникновение непредвиденных последствий и нежелательного поведения. Своевременное выявление и пресечение такой непредвиденной эмерджентности является важной задачей системной инженерии SoS.