Cуперкомпьютеры: администрирование
Шрифт:
Такой подход позволяет максимально задействовать все процессорные ядра – на каждом выполняется свой процесс или поток. Действия разных процессов в одной программе необходимо согласовать, для этого в средах параллельного программирования предусмотрены разные механизмы: в MPI – передача сообщений, в OpenMP – общие переменные и автоматическое распараллеливание циклов и т. д. Технологии типа MPI – это не только указание особых функций и инструкций в коде, но и среда запуска программы. Особенно это относится к средам, использующим несколько вычислительных узлов, – ведь на каждом узле надо запустить экземпляр (а то и не один) программы и «подружить» его с остальными запущенными экземплярами той же программы (но
Например, в кластере используется скоростная коммуникационная сеть (InfiniBand или другая) и обычный Ethernet для управления. Установленная среда MPI работает, но эффективность работы программ низкая. Нередко причиной является неверная настройка, в результате которой MPI использует медленную управляющую сеть вместо скоростной.
Виды кластеров
Когда говорят «кластер», подразумевают множество компьютеров, объединённых в нечто единое. Но вариантов этого «нечто» может быть несколько. Они отличаются целью и, как следствие, – реализацией.
Первый вид кластеров – High-Availability, или кластеры высокой доступности. Их задача – предоставить доступ к какому-то ресурсу с максимальной скоростью и минимальной задержкой. Ресурсом обычно выступают web-сайт, база данных или другой сервис. В таком кластере при выходе из строя одного узла работоспособность всего ресурса сохраняется – клиенты сбойного узла переподключаются и получают доступ к ресурсу с другого узла кластера. Очень похожий принцип применяется в «облачных» технологиях: вы не знаете, на каком именно узле будет работать ваше приложение или образ операционной системы, облако само подберёт свободные ресурсы.
Другой вид кластеров – High Productivity. Этот тип похож на предыдущий, но в данном случае все узлы кластера уже работают над одним заданием, разбитым на части. Если какой-то узел отказал, его часть задания отправляется другому; если в кластер добавляются новые узлы, им выделяются не посчитанные ещё части, и общий счёт идёт быстрее. В качестве примеров можно назвать GRID, программы типа Seti@home, Folding@Home. Однако с помощью таких кластеров может быть решён только узкий класс задач. Да и сам кластер для таких задач нередко становится не нужен, можно воспользоваться домашними компьютерами или серверами, связав их через локальную сеть или Интернет.
Третий вид – High Performance (HPC – High Performance Computing). Именно он интересен нам. В отличие от остальных, выход из строя одного из узлов кластера, как правило, ведёт к аварийному завершению параллельной программы, только в редких случаях выполнение программы автоматически продолжается с сохранённой ранее контрольной точки. Именно поэтому, в отличие от предыдущих видов, HPC-кластеры менее устойчивы в работе, и без должного контроля и мониторинга использовать их просто не получится.
Важное отличие этого вида кластеров от остальных – тесная связность всех узлов. Это и самые быстрые сети, соединяющие узлы, и высокопроизводительные параллельные файловые системы, и средства дополнительной синхронизации узлов, и другие средства, важные для параллельных программ. Приложения, работающие на таких кластерах, как правило, работают в модели передачи сообщений между параллельно запущенными процессами. Если запустить их на множестве компьютеров, соединённых медленной сетью, то они б'oльшую часть времени потратят на ожидание информации друг от друга.
Идеал, к которой стремятся все производители кластеров, – создать виртуальный компьютер с большой памятью
Кластеры и суперкомпьютеры – общее и разное
Мы только что поговорили о кластерах. Но всегда ли слово «суперкомпьютер» означает кластер? Нет, не всегда. Важная черта кластера – возможность сборки из серийных общедоступных компонентов. Т. е. можно купить все компоненты кластера в магазине и, обладая достаточным опытом, собрать его самостоятельно.
Суперкомпьютер в общем случае – изделие с уникальными компонентами, производимое одним поставщиком. В качестве примера приведём серию Blue Gene компании IBM – архитектура этих машин похожа на кластер, на них доступны те же программные средства, что и на вычислительных кластерах, но купить Blue Gene можно только у IBM или их дистрибьюторов.
Построить Blue Gene самостоятельно невозможно: ключевые компоненты отдельно не продаются. И дело не в марке, а в уникальных технологиях. Кроме Blue Gene есть множество иных серий, иных уникальных разработок. Обратный пример – «вычислительные фермы», т. е. группы компьютеров, работающих над одной задачей, но обычно даже не передающие данные друг другу, или кластеры класса «BeoWulf [2] », т. е. собранные практически из подручных средств.
Как видим, грань между понятиями «кластер» и «не-кластер» достаточно чёткая, но какой кластер считать суперкомпьютером, а какой нет – вопрос размытый. Часто вместо «кластер» говорят более тактично: «обладающий кластерной архитектурой». В этой книге мы будем рассматривать технологии, доступные для всех или большинства. Следовательно, большинство из них будет относится именно к кластерам. Но это не значит, что в вычислительных комплексах, которые мы формально не относим к кластерам, этих технологий не встретится. Большинство современных суперкомпьютеров используют те же наработки, что и кластеры, более того, почти все они построены как кластеры с добавлением особо быстрых сетей, техник работы с общей памятью, синхронизации или иных технологий. А значит, все знания о кластерах вам только помогут.
2
Подробнее см. http://parallel.ru/computers/reviews/beowulf.html.
Что означает «супер» для администратора суперкомпьютера
На первый взгляд, большой кластер ничем не отличается от множества офисных компьютеров, объединённых локальной сетью, и нескольких стандартных серверов – дискового хранилища и т. п. На самом деле отличия есть, и очень важные. Начнём с оборудования – для кластера требования намного выше. Если в локальной сети можно временно заменить сломанный коммутатор на более простой или даже на несколько дней нарушить связность сети (ну, придётся отчёты печатать на втором этаже, потерпите), то в кластере это недопустимо. Заменив IB-коммутатор на GigabitEthernet или узел с 8ГБ памяти на узел с 4ГБ, мы получим неработающий кластер или работающий так, что все пользователи завалят нас жалобами.