Чтение онлайн

на главную - закладки

Жанры

Десять великих идей науки. Как устроен наш мир.
Шрифт:

Рис. 3.9.Когда производится работа, энергия передается в таком виде, что атомы движутся однородно по заданному пути. В увеличенном фрагменте поршня, который движется вверх, мы видим, как атомы движутся вместе. Они передают движение объекту, связанному с поршнем или находящемуся на нем, и производят, например, поднятие груза.

А что насчет тепла? Давайте опять заглянем в воображаемый микроскоп такой силы, что в него можно видеть движение атомов. Теперь в горячем объекте нет движущегося поршня или лопастей турбины, никаких подвижных частей. Вместо этого энергия просачивается сквозь проводящую стенку. Теперь нет явного движения окружающих атомов, но мы видим, что они колеблются практически случайно (рис. 3.10). Когда энергия покидает объект и выходит в его окружение, атомы окружения колеблются еще более энергично и передают энергию своих колебаний соседям, которые в свою очередь передают ее своим соседям. Говоря коротко, перенос энергии

в виде тепла является переносом энергии, который создает в области своего действия случайноедвижение атомов.

Рис. 3.10.Когда энергия переходит в тепло, движение атомов является дезорганизованным. Мы можем вообразить, что атомы горячего объекта и его проводящей тепло стенки (горизонтальная плита) сильно колеблются около своих средних положений, толкая друг друга. Эти толчки переносят энергию в окружающее пространство, где атомы подхватывают тепловое движение.

Случайные колебания атомов называются тепловым движением. Это не тепло. Тепло является способом передачи энергии. Мы никогда не должны говорить, что «тепло передается», за исключением тех случаев, когда мы понимаем, что это лишь удобный способ сказать, что энергия передается как тепло или посредством тепла. Тепло в действительности лучше рассматривать как глагол, чем как существительное. Тепло не является тепловой энергией. Такой вещи не существует, несмотря на то, что этот термин широко используется (существуют только кинетическая и потенциальная энергии, каждая из которых вносит вклад в тепловое движение, и энергия излучения). Тепло не является термической энергией. Такой вещи не существует, это лишь удобный способ обозначить энергию теплового движения.

Это атомическое различие между работой и теплом имело большое влияние на развитие цивилизации. Довольно легко выделить энергию в виде тепла: энергия должна быть просто вброшена в случайную путаницу движения атомов. Поэтому раннее человечество довольно скоро научилось это делать. Гораздо труднее выделять энергию в виде работы, поскольку энергия должна проявиться как упорядоченное движение атомов. Отличные от тел животных приборы, предназначенные для производства этой упорядоченной моды выделения энергии, не были сконструированы (за исключением нескольких единичных случаев) вплоть до восемнадцатого века, а, чтобы достичь эффективности, потребовалось еще несколько столетий для их усовершенствования (рис. 3.11).

Рис. 3.11.Здесь изображено нагромождение изощренных приборов, необходимых для извлечения энергии в виде работы. Возможность извлекать энергию в этом виде, а не просто как тепло была относительно поздним достижением цивилизации.

Теперь мы узнали, как тепло встало на путь истинный и как энергия сохраняется в реальности. И теперь, когда мы понимаем, что энергия может быть передана как тепло или работа, мы можем сделать вывод, что энергия сохраняется как в области динамики, в области движения отдельных тел и взаимообмена кинетической и потенциальной энергий, так и в области термодинамики, взаимообмена тепла и работы. Энергия действительно является универсальной валютой космической бухгалтерии, поскольку никакое событие, в котором энергия возникает или уничтожается, не может произойти. Энергия, таким образом, является ограничителем для событий, которые возможны во Вселенной, ибо никакое событие, сопровождаемое изменением полной энергии Вселенной, случиться не может. Это заключение очень понравилось бы Томсону и Клерку Максвеллу, которые стали энтузиастами закона сохранения энергии через их веру в то, что Господь в своей безграничной мудрости в момент Творения одарил Вселенную фиксированным количеством энергии и что человечество должно иметь дело с тем, что бесконечно мудрый Бог считает приемлемым.

Вопрос о том, как много энергии есть во Вселенной, вероятно, занимал Томсона и Максвелла, поскольку ответ на него был бы количественной мерой божественной щедрости: они, возможно, предполагали, что это количество бесконечно, так как что-либо меньшее указывало бы на ограниченность творческой силы Бога и было бы, таким образом, неприемлемым намеком на божественную слабость. Поскольку энергия сохраняется, если бы мы могли определить полную энергию на текущий момент, то она была бы той же, что и в первоначальном щедром пожертвовании. Итак, сколько же энергии существует ныне? Честным ответом будет, что мы не знаем. Однако существует путеводная нить, которая указывает на ответ.

Сначала, как это часто бывает в науке, мы должны отбросить наши предрассудки. Определенно нам кажется, что энергии очень много: достаточно подумать только о вулканах и ураганах на Земле и о сверкании звезд, чтобы прийти к заключению, что Вселенная одарена колоссальным запасом энергии. Действительно, ее даже больше, чем видит глаз, поскольку (как мы более подробно увидим в главе 9) масса является эквивалентом энергии, так что все вещество есть форма энергии (по формуле E = mc 2). Если бы нам пришлось складывать вместе массы всех звезд во всех галактиках видимой Вселенной, мы получили бы гигантскую общую массу и, следовательно, гигантскую общую энергию. Однако в науке как и в жизни, надо быть осмотрительными. Ведь есть и другой вклад в энергию, гравитационное притяжение между массами. Притяжение понижает энергию взаимодействующих тел, так

что чем их больше, тем нижеэнергия. Одним из способов выразить это является описание энергии гравитационного притяжения отрицательной величиной, так что чем больше притяжение, тем больше уменьшение полной энергии. [13] Поскольку его вклад отрицателен, когда мы прибавим все гравитационные взаимодействия между звездами в галактиках и между галактиками, наша первоначально гигантская полная энергия будет сведена на нет.

13

Энергия притяжения между Солнцем и Землей дает огромный вклад 5,3x10 33Дж в полную энергию, таким образом, нельзя пренебрегать потенциальной энергией гравитации, даже несмотря на то, что сама гравитация довольно слаба.

Будет ли она сведена на нет полностью? Это начинает выглядеть именно так. Мы можем судить о полной энергии Вселенной, исследуя скорость ее расширения (эта тема более подробно рассматривается в главе 8). Если отрицательное гравитационное взаимодействие преобладает над положительным вкладом масс, то в долговременной перспективе Вселенная будет расширяться все медленнее, затем начнет сжиматься и, наконец, свалится сама в себя в Большом Хлопке. Это в точности похоже на подбрасывание мяча в воздух с кинетической энергией, слишком маленькой для того, чтобы он мог улететь, в конечном счете сила гравитации снова притянет его к Земле (рис. 3.12). Такое будущее во все возрастающей степени мыслится как неправдоподобное. С другой стороны, если гравитационное притяжение слабо, Вселенная будет расширяться вечно. Это похоже на подбрасывание мяча с такой колоссальной величиной кинетической энергии, что он вырвется из силы гравитации, улетит в межгалактическое пространство и будет продолжать движение, пока не улетит в бесконечность. Такое будущее остается возможным: наблюдения не противоречат этому.

Рис. 3.12.Пути с поверхности сферы указывают, что происходит, когда мы подбрасываем мяч над поверхностью Земли. Если мы подбрасываем его относительно слабо (со скоростью, меньшей той, которая нужна, чтобы покинуть Землю), то он упадет обратно. Если мы подбрасываем его сильно (со скоростью, большей той, которая нужна, чтобы покинуть Землю), он улетит в бесконечность и будет продолжать движение, даже достигнув бесконечности. Линия из точек показывает, что происходит, когда мы бросаем его точно с той скоростью, которая нужна, чтобы покинуть Землю: он покинет ее, но замедляясь и останавливаясь по мере удаления в бесконечность. Линия из точек разделяет области возвращения и улетания. График показывает, как эта идея может быть приложена ко Вселенной в целом. Если гравитация сильна (поскольку во Вселенной имеется много вещества), то Вселенная через какое-то время в будущем переживет коллапс (как подброшенный и возвратившийся мяч). Если гравитация слишком слаба (поскольку во Вселенной слишком мало вещества), то размеры Вселенной будут возрастать всегда (как мяч, подброшенный и вечно улетающий). Если гравитация и движение наружу в точности уравновешивают друг друга, Вселенная будет всегда расширяться и стремиться к прекращению движения (как мяч, брошенный со скоростью, которая нужна, чтобы покинуть Землю).

Если положительный и отрицательный вклады энергии в точности равны, Вселенная также будет расширяться вечно, но ее расширение будет становиться все медленнее и медленнее по мере того, как она будет становиться все больше и больше, и в очень отдаленном будущем мы можем представить себе Вселенную парящей между непрерывным расширением и коллапсом. Это похоже на бросание мяча вверх точно с такой скоростью, чтобы он получил как раз достаточно кинетической энергии, чтобы покинуть Землю, но, по мере его стремления к бесконечности, замедлился бы до полной остановки. Поскольку такой шар не движется, его кинетическая энергия равна нулю, а поскольку он бесконечно удален от Земли и находится вне области действия ее притяжения, его потенциальная энергия равна нулю, поэтому он имеет нулевую полную энергию. Так как энергия сохраняется, несмотря на то, что кинетическая и потенциальная энергии изменяются, полная энергия мяча должна быть равна нулю все время. Существует усложняющий дело фактор, связанный с возможными дополнительными эффектами, ведущий к ускорению расширения Вселенной (см. главу 8), но все выглядит так, что полная энергия Вселенной действительно очень близка к нулю. На самом деле, она может быть равна нулю в точности. Если последнее окажется верным, это будет похоже на то, что Бог несколько поскупился, когда обеспечивал Творение энергией.

Обманчивое впечатление, что во Вселенной очень много энергии, возникает из того факта, что мы обращаем внимание лишь на видимые формы энергии (такие, как вещество и свечение звезд) и игнорируем другие ее формы (гравитационную составляющую). Именно эта дифференциация энергии (а вовсе не полная энергия) и наделяет Вселенную захватывающим динамизмом.

Каждая монета имеет обратную сторону. Сохранение энергии, закон, который выглядит абсолютно не имеющим исключений, имеет исключения. Квантовая механика многими способами подрывает нашу уверенность в себе. Одним из многих причудливых следствий квантовой механики (глава 7) является то, что энергия может быть описана как определенная величина, только если состояние с этой энергией сохраняется всегда. В соответствии с квантовой механикой, частица со скоротечным существованием не имеет определенной энергии, и в короткий промежуток времени энергия Вселенной не может быть описана определенной величиной, а потому у этой энергии нет необходимости сохраняться. Может быть, вечный двигатель с коротким временем жизни все же можно построить!

Поделиться:
Популярные книги

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Отверженный VI: Эльфийский Петербург

Опсокополос Алексис
6. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VI: Эльфийский Петербург

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Князь

Шмаков Алексей Семенович
5. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
5.00
рейтинг книги
Князь

Совершенный: Призрак

Vector
2. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: Призрак

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

Солнечный корт

Сакавич Нора
4. Все ради игры
Фантастика:
зарубежная фантастика
5.00
рейтинг книги
Солнечный корт

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Эволюционер из трущоб. Том 6

Панарин Антон
6. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Эволюционер из трущоб. Том 6