Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Один из способов повышения разрешающей силы микроскопа и, следовательно, максимально возможного увеличения является уменьшение длины волны света, в лучах которого исследуется объект. Первым препятствием для укорочения волны является нечувствительность нашего глаза к ультрафиолетовым излучениям. Заменяя глаз фотопластинкой, можно значительно продвинуться в область ультрафиолетовых лучей и тем самым повысить разрешающую способность и полезное увеличение микроскопа. Очень больших успехов в деле создания ультрафиолетовых микроскопов добился советский ученый Е. М. Брумберг.

Такие микроскопы довольно часто применяются учеными, но они имеют один немаловажный недостаток — исследуемый

объект можно увидеть только после проявления фотографий. Поэтому в настоящее время в ультрафиолетовый микроскоп вводят еще одно важное устройство— преобразователь изображениях его помощью недоступное глазу изображение в ультрафиолетовых лучах превращается в видимое. Преобразователи такого рода основаны на хорошо известном явлении фотоэффекта.

А пока вернемся к очень интересному методу цветной ультрафиолетовой фотографии микроскопических объектов.

По существу, ни о каких естественных цветах в этом случае говорить нельзя. Но очень часто для лучшего различения мелких деталей объекта и определения оптических свойств отдельных его частей объект фотографируют в различных участках спектра ультрафиолетовых лучей. Можно условно назвать самые длинноволновые из них красными, промежуточные— зелеными, а самые коротковолновые — синими. Три негатива, полученные таким способом, можно использовать для получения цветного отпечатка. Изображение такого рода может оказаться гораздо более подробным: участки красного цвета на нем будут соответствовать тем местам изображения, где от объекта приходило много длинноволновых ультрафиолетовых лучей; зеленые цвета покажут, где приходило много промежуточных лучей, и так далее. Зная теорию смешения цветов, вы можете судить о составе лучей и в тех местах, где имеются отличные от исходных хроматические цвета. Одна из фотографий подобного рода приведена здесь.

Ультрафиолетовые микроскопы Брумберга позволяют примерно вдвое повысить разрешающую способность и полезное увеличение микроскопа. К сожалению, идти по пути еще большего укорочения световых волн затруднительно, вследствие того что большинство объектов очень сильно поглощает короткие ультрафиолетовые лучи. Кроме того, возникают трудности и иного рода. Они уже связаны с оптическими свойствами стекла: с сильным поглощением ультрафиолетовых лучей в стекле.

В последние годы в микроскопии стал широко использоваться и другой участок диапазона невидимых световых лучей — инфракрасный. Разрешающая сила микроскопов и полезное увеличение при работе в этих лучах, естественно, снижаются, но цель применения инфракрасных лучей в микроскопии другая; эти лучи позволяют вести такие исследования, которые раньше казались совершенно невыполнимыми. Оказывается, что многие органические и неорганические вещества, непрозрачные для лучей видимого света, хорошо пропускают инфракрасные. Это позволяет исследовать их микроструктуру с помощью специальных инфракрасных микроскопов.

Модель инфракрасного микроскопа была создана электрофизической лабораторией Института металлургии Академии наук СССР в 1956–1957 годах. Эта модель хорошо зарекомендовала себя, и с 1960 года начался выпуск инфракрасных микроскопов «МИК-1».

Микроскоп этого типа позволяет проводить наблюдения как в видимых, так и в ближней зоне (до 1200 миллимикронов) инфракрасных лучей. Наблюдение может вестись в отраженном и проходящем свете. В микроскопе имеется преобразователь, и поэтому изображение можно наблюдать непосредственно или фотографировать.

Мы привыкли считать металлы непрозрачными, и действительно нам никогда не приходилось видеть их иными. И, если бы к кому-либо из нас попал чистый кремний (силиций) или чистый германий (экасилицием называл

его Менделеев, предсказавший существование этого химического элемента), мы, глядя на блестящие серебристые кусочки этих металлов, и не подумали бы, что они прозрачны. На самом же деле они очень хорошо пропускают свет, но не видимый, а инфракрасный.

В наши дни кремний и германий — металлы новейшей радиоэлектроники.

Именно из кристаллов этих химических элементов делаются многие полупроводниковые устройства: диоды, фотодиоды, транзисторы, фототранзисторы, солнечные батареи для спутников, элементы холодильных устройств. Для их изготовления кремний и германий должны быть полностью очищены от различных примесей, а их кристаллическое строение не должно иметь никаких дефектов. Получение химически чистых крупных кристаллов — одна из самых сложных задач, когда-либо решавшихся металлургией. И поэтому не случайно, что инфракрасный микроскоп создали не в каком-либо оптическом институте, а в Институте металлургии, где он, по-видимому, был наиболее необходимым.

Инфракрасный микроскоп позволяет заглянуть внутрь кристаллов кремния и германия. Он дает возможность более глубоко изучить возникающие дефекты и тем самым найти пути их устранения. На помещенной здесь фотографии, сделанной с помощью «МИК-1», видно изображение кристалла кремния; темные загнутые линии и есть дефекты его строения.

Фотография дефекта в кристалле кремния, полученная в инфракрасных лучах с помощью микроскопа «МИК-1». Эту фотографию сделали сотрудники Института металлургии Академии наук СССР.

Итак, инфракрасные лучи позволили проникнуть в толщу непрозрачных для обычного света веществ. Но при этом разрешающая сила и полезное увеличение микроскопа упали. И, видимо, у большинства читателей уже давно возник вопрос: «Почему же для этих целей не были использованы рентгеновские или гамма-лучи, которые практически проникают через все вещества и в то же время имеют очень короткие длины волн?»

Вопрос этот совершенно справедливый. Действительно, микроскоп, работающий на этих лучах, имел бы очень высокую разрешающую способность. С его помощью можно было бы увидеть даже молекулы.

Ученые пытались строить рентгеновские микроскопы. И они уже существуют. Но пока еще не созданы такие инструменты, которые могли бы сравниться по качеству с обычными микроскопами.

Сложность заключается в том, что науке неизвестен какой-либо материал, который мог бы преломлять рентгеновские или гамма-лучи подобно тому, как преломляет стекло обычные световые волны. Делались попытки использовать вместо линзовых рефлекторные схемы, но и на этом пути не добились большого успеха. Зеркало, которое великолепно отражает лучи видимого и даже ультрафиолетового света, для рентгеновских лучей представляет собой не гладкую отражающую, а изрытую глубокими бороздами и ямами поверхность. Это происходит потому, что неровности, которые были неощутимы для довольно длинных волн видимого света, становятся соизмеримыми и даже превышают длину волны рентгеновского и гамма-излучения. Поэтому полировка зеркал для таких коротковолновых лучей требует необыкновенной, недостижимой по разным причинам чистоты поверхности. Но это еще не вся трудность. Не менее существенно и то, что рентгеновские лучи могут отражаться от зеркал только в том случае, если углы их падения отлогие. При достаточно крутых углах отражения не происходит даже и при хорошем зеркале — лучи проникают в его толщу.

Поделиться:
Популярные книги

Я еще князь. Книга XX

Дрейк Сириус
20. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще князь. Книга XX

Загадки Лисы

Началова Екатерина
3. Дочь Скорпиона
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Загадки Лисы

Седьмой Рубеж II

Бор Жорж
2. 5000 лет темноты
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Седьмой Рубеж II

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Возвышение Меркурия. Книга 5

Кронос Александр
5. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 5

Волков. Гимназия №6

Пылаев Валерий
1. Волков
Фантастика:
попаданцы
альтернативная история
аниме
7.00
рейтинг книги
Волков. Гимназия №6

Барон не признает правила

Ренгач Евгений
12. Закон сильного
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Барон не признает правила

"Фантастика 2023-126". Компиляция. Книги 1-22

Руденко Борис Антонович
Фантастика 2023. Компиляция
Фантастика:
фэнтези
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Фантастика 2023-126. Компиляция. Книги 1-22

Тигр под елку

Зайцева Мария
4. Наша
Любовные романы:
короткие любовные романы
5.00
рейтинг книги
Тигр под елку

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Пушкарь. Пенталогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.11
рейтинг книги
Пушкарь. Пенталогия

Настроение – Песец

Видум Инди
7. Под знаком Песца
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Настроение – Песец

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Пепел и кровь

Шебалин Дмитрий Васильевич
4. Чужие интересы
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Пепел и кровь