Чтение онлайн

на главную - закладки

Жанры

Шрифт:

А.Р. Мы с тобой пытались найти наблюдательные факты против этой гипотезы. И ничего не нашли.

В.С. Да, не удалось, и это очень интересно. То есть, в составе нашей Галактики, кажется, есть звёздные системы, которые должны помнить о том, как Галактика рождалась, и не только наша, но и соседние. В этом направлении мы проводим сейчас большую работу, пытаясь выявить эти воспоминания, вытащить их из динамики движения, из «памяти», которая осталась у шаровых скоплений. Да и сама по себе эволюция шарового скопления – замечательная астрономическая проблема. Дело в том, что с возрастом скопление становится всё более центрально концентрированным. Обмениваясь энергиями, одни звёзды получают большие скорости и уходят на периферию скопления, а другие – тормозятся и падают к его центру. Постепенно у скопления всё более и более возрастает плотность ядра. В конце концов, как показывают расчёты, происходит катастрофа. Кстати, впервые это заметил наш петербургский астроном Вадим Антонов, который теоретически показал, что ядро звёздного скопления должно приобрести за конечное время

бесконечную плотность. Это чисто математический результат, который, конечно, нельзя воспринимать буквально…

А.Р. Он верен в теоретическом приближении, когда звёзды рассматриваются как тяготеющие материальные точки.

В.С. Конечно, это идеализация. Бесконечных плотностей не бывает в физической Вселенной. Значит, какой-то процесс должен привести к чему-то особенному в центре шарового скопления. Многие годы астрономы считали, что звёзды станут так близко, контактно подходить друг к другу, что начнут сливаться и превращаться в одну «сверхзвезду». Были попытки найти в центрах шаровых скоплений гигантские звездообразные ядра. Они не увенчались успехом. Тогда идея эволюционировала на следующую стадию: сверхзвезда должна сколлапсировать и стать чёрной дырой. Давление действительно может привести к её сильному сжатию. Эта идея, кажется, получила первое подтверждение буквально в конце прошлого года, когда в ядре одного шарового скопления нашей Галактики и второго скопления в Туманности Андромеды – это соседняя с нами спиральная галактика – были найдены, если не сами чёрные дыры, то очень ясные индикаторы присутствия массивных чёрных дыр. Возможно, это очень редкий этап, редкий эпизод в жизни скопления, потому что в других мы чёрных дыр не находим. Но, во всяком случае, в этих двух, скорее всего, они есть. Причём, это не рядовые чёрные дыры: их масса в тысячи раз больше, чем масса нашего Солнца. Это сверхмассивные чёрные дыры, рядом с ними должны наблюдаться удивительные процессы.

Но оказалось, что у большинства шаровых скоплений эволюция, дойдя до определённого этапа, как бы начинает прокручивать плёнку назад. Ядро скопления, достигнув определённой критической плотности, вдруг начинает вновь расширяться и редеть. В чём дело, разве могут звёзды отталкиваться друг от друга, ведь работает только притяжение. Оказывается, могут, и довольно эффективно. Дело в том, что при близком пролёте двух звёзд они могут образовать двойную систему. Приливные силы заставляют звёзды связываться друг с другом и образовывать очень плотные двойные системы. А когда мимо такой двойной звезды пролетает третья звезда, между ними происходит активное взаимодействие. Третье светило, пролетая мимо двух звёзд, объединённых в систему, получает большую скорость и «выстреливается», как из рогатки, покидая место встречи с удвоенной, иногда – с утроенной скоростью. Порой происходят обмены: когда к системе из двух лёгких звёзд подлетает более массивная звезда, двойная система может «поменять партнёра». Она выбрасывает из своего состава лёгкую звезду, а на её место захватывает более тяжёлую. Естественно, лёгкая звезда получает большую скорость, используя ту энергию, которая принесла с собой подлетевшая тяжёлая звезда. Таким образом, в центре шарового скопления возникает своеобразный источник энергии. Звёзды, пролетая через плотное ядро, вылетают оттуда с большими скоростями. И этот источник энергии заставляет расширяться ядро, то есть, коллапс сменяется расширением. Похоже, что такая судьба ожидает большинство шаровых скоплений; быть может, через этот этап эволюции уже прошли многие скопления…

А.Р. Но он может быть и повторяющимся. Такие циклы сжатия и расширения. По крайней мере, расчёты это дают.

А.Г. Пульсация такая, да?

В.С. Это интересный вопрос. Скажу два слова о расчётах, потому что здесь в последние годы произошёл большой прогресс. Ещё недавно исследовать динамику миллиона взаимодействующих тел было невозможно, наши компьютеры не позволяли это делать. Буквально в конце 1990-х годов астрономы Токийского университета создали специальный компьютер, который не умеет почти ничего: на нём нельзя играть в электронные игры, скажем, в шахматы. Он умеет только изучать взаимодействия звёзд друг с другом. Но это он делает с колоссальной скоростью и с высокой эффективностью. Это специализированная машина, на ней можно смоделировать миллиарднолетнюю эволюцию скопления из миллиона звёзд, причём, не идеализируя их как математические точки, а приписав им размер, массу, вращение, и посмотрев, как они физически общаются друг с другом, обмениваются массой, объединяются в двойные системы. Чрезвычайно интересно наблюдать, как этот компьютер прокручивает перед нами жизнь звёздного скопления, упаковав в несколько часов расчётного времени миллиарды лет от рождения до полного развала этой системы. И вот как раз в этих расчётах проявляется нестабильность ядра. Ядро шарового скопления может сжаться, потом расшириться, затем опять сжаться. И так происходит несколько раз, может быть, даже десятки раз в его жизни. Таким образом, мы его видим то похожим на молодое скопление, то состарившимся, то, через несколько миллиардов лет, опять как бы омолодившимися. В этом смысле возраст скопления трудно понять, трудно измерить.

А.Г. Есть гипотезы возникновения шаровых звёздных скоплений?

В.С. О, к сожалению, их много.

А.Г. Но вы каких придерживаетесь?

В.С. Мы пытаемся понять, какие из них более соответствуют действительности. Дело в том, что на самом раннем этапе эволюции Вселенная была чрезвычайно однородна. Это не гипотеза. Это абсолютно надёжный факт, который следует из наблюдения реликтового

излучения, а оно приходит к нам с колоссального расстояния, а значит, с огромным запаздыванием во времени. При красных смещениях около тысячи, то есть, скоростях удаления от нас, очень близких к скорости света, Вселенная была чрезвычайно однородна. Сегодня она очень неоднородна. Всё вещество Вселенной разделено на галактики, скопления галактик, внутри себя галактики разделены на звёзды, и так далее. Как произошло это деление вещества на отдельные фрагменты – до сих пор загадка. Теория показывает, что первыми должны были рождаться объекты, чрезвычайно похожие на шаровые скопления. Именно в этом и состоит одна из гипотез их происхождения. Она утверждает, что первый этап деления космического вещества, разбиения его на части, привёл к рождению объектов, похожих на шаровые скопления. Затем они, как изюминки в тесте, рассеялись в довольно однородном веществе, которое продолжало дробиться на всё более и более крупные фрагменты. И как хозяйка делает булочки из теста с изюмом, так же природа делала из вещества Вселенной галактики, в состав которых уже входили «изюминки» – звёздные скопления. Казалось бы, чем больше получилась булочка, тем больше изюминок должно в неё попасть. Чем больше галактика, тем больше должно быть в ней шаровых скоплений. Если это подтвердится, то гипотеза исходного рождения шаровых скоплений получит право на жизнь.

А.Р. Не исключено, что это действительно так. В гигантских эллиптических галактиках – десятки тысяч шаровых скоплений.

В.С. Но есть галактики, почти полностью лишённые шаровых скоплений, и в этом заключена большая проблема: куда делись шаровые скопления, которые должны были быть исходно в этих системах? Исследуя этот вопрос, мы выяснили, что шаровые скопления гибнут, сегодня мы об этом уже говорили, гибнут по разным причинам. Причём, гибнут с разной скоростью в зависимости оттого, в какую галактику они попали. Некоторые галактики, например, эллиптические, лишены плотного диска, поэтому они довольно благополучны в смысле продолжительности жизни шаровых скоплений, которым уготована длительная жизнь, поскольку мало причин для их разрушения. А галактики вроде нашей – с плотным диском, населённым массивными газовыми облаками, – не лучшее место для жизни шаровых скоплений. В такой галактике скопление довольно быстро гибнет: пролетая мимо массивных облаков газа или проходя сквозь плотный диск галактики, скопление испытывает мощный приливный удар и теряет свои звёзды.

Иногда случаются столкновения звёздных скоплений друг с другом. Представьте себе: два шара по миллиону звёзд в каждом, встречаясь со скоростью 300–400 километров в секунду, сталкиваются. Как вы думаете, что при этом происходит?

А.Р. Ничего! Они просто не чувствуют друг друга.

В.С. Да, звёздные скопления – это «видимое ничто». Они пролетают друг сквозь друга, практически не замечая этого. Как раз такие столкновения не приводят к их разрушению. Но всё-таки время от времени звёзды внутри скоплений сталкиваются друг с другом, и это мы тоже исследуем в своей работе. В окрестностях Солнца звёзды очень редко сближаются друг с другом, и нашему Солнцу в этом смысле ничего не грозит. Но в недрах шаровых скоплений, где расстояния между звёздами в сотни раз меньше – там столкновение звёзд довольно обычное дело, и астрономы пытаются это наблюдать. Столкновение двух гигантских газовых шаров со скоростью 300–400 километров в секунду – это должно быть грандиозное явление!

В конце концов, не исключено, что и Солнце когда-нибудь испытает такое столкновение. Кстати, может быть ситуация достаточно неожиданная в том смысле, что все обычные звёзды в околосолнечном пространстве мы контролируем: знаем их траектории, знаем, когда они подойдут к Солнцу, и не ожидаем поэтому ничего катастрофического. А вот маленькие звёздочки, уже прожившие свою жизнь, – белые карлики, нейтронные звёзды – сжавшиеся, потерявшие свою светимость, – трудно контролировать, и они могут неожиданно вынырнуть из темноты…

А.Г. Подобно астероиду…

В.С. Да. И накануне такого столкновения, конечно, уже ничего нельзя будет предпринять. А катастрофа при этом может произойти весьма впечатляющая. Скажем, крохотный белый карлик, имеющий массу обычной звезды, подлетев к Солнцу, будет играть роль запала, который воткнули в огромную массу динамита. Ведь Солнце само по себе – это огромный резервуар горючего, которое медленно, миллиард за миллиардом лет, сгорает и только поэтому не причиняет Земле никакого вреда. Но когда маленький карлик с огромной силой тяжести на своей поверхности, внедрится в Солнце, на его поверхности термоядерные реакции из богатого водородом солнечного вещества приобретут колоссальную эффективность, и Солнце взорвётся изнутри. Я отнюдь не пугаю телезрителей, а просто рассказываю об одном из сценариев, который возможен не обязательно для нашего Солнца, но для одной из звёзд, на него похожих. И такие явления происходят, по крайней мере, в самых плотных из известных нам скоплений, которые расположены в ядрах галактик. Активные ядра галактик – это такие, где звёзды наиболее плотно упакованы и наиболее часто встречаются друг с другом.

А.Г. В этом смысле нам всё-таки повезло, потому что у нашего Солнца вероятность умереть естественной смертью выше, чем у любой звезды в центре звёздного скопления.

В.С. Она стопроцентная. Но для астрономов всё-таки интереснее изучать звёзды в движении и в столкновении. Только так мы можем увидеть, что же у них внутри, как работает та термоядерная фабрика, которую пока нет возможности наблюдать. В этом смысле, мы радуемся, когда находим места, где звёзды сталкиваются, взаимодействуют, рвут друг друга на части. Это интересно, это позволяет понять многое из того, что пока загадка.

Поделиться:
Популярные книги

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Коллектив авторов
Warhammer Fantasy Battles
Фантастика:
фэнтези
5.00
рейтинг книги
Warhammer: Битвы в Мире Фэнтези. Омнибус. Том 2

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Мы все умрём. Но это не точно

Aris me
Любовные романы:
остросюжетные любовные романы
эро литература
5.00
рейтинг книги
Мы все умрём. Но это не точно

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Архил...? 4

Кожевников Павел
4. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
5.50
рейтинг книги
Архил...? 4

Город Богов 3

Парсиев Дмитрий
3. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 3

Подари мне крылья. 2 часть

Ских Рина
Любовные романы:
любовно-фантастические романы
5.33
рейтинг книги
Подари мне крылья. 2 часть

Город воров. Дороги Империи

Муравьёв Константин Николаевич
7. Пожиратель
Фантастика:
боевая фантастика
5.43
рейтинг книги
Город воров. Дороги Империи

Матабар III

Клеванский Кирилл Сергеевич
3. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар III

Мир Возможностей

Бондаренко Андрей Евгеньевич
1. Мир Возможностей
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Мир Возможностей

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я