Диалоги (октябрь 2003 г.)
Шрифт:
В.Л. Вылететь могут…
С.Г. Последнее достижение многолетней работы – это то, что с помощью нейтрино удалось заглянуть в центр Солнца и посмотреть, как оно работает. Были большие сомнения, потому что первый эксперимент по идее Понтекорво, поставленный Дэвисом…
А.Г. Там возник дефицит нейтрино.
С.Г. Да, дефицит нейтрино. Потом японцы запустили установку «Камиоканде», потом еще «Суперкамиоканде». У них тоже был дефицит, но если вы брали данные «Камиоканде» и потом переносили этот поток к Дэвису, оказывалось, что некоторые побочные источники нейтрино,
На Баксане, в институте, где работает Владимир Михайлович, был поставлен опыт.
В.Л. Это отдел академика Зацепина.
С.Г. Был поставлен опыт, предложенный Кузьминым – галлий-германиевый радиохимический способ, там было накоплено 60 тонн галлия, это фактически вся мировая добыча.
В эксперименте Дэвиса не мог быть зарегистрирован основной поток нейтрино, который обладает меньшей энергией, порог регистрации у него был высокий. А в галлие-германиевом эксперименте регистрируется именно основной поток. И там тоже обнаружили дефицит. Это означало, что дело не в Солнце. Все решились буквально два года назад, когда заработала канадская обсерватория SNO, они обнаружили следующее.
У них была тяжелая вода, то есть был дейтерий, и они могли регистрировать, как электронные нейтрино, которые вызывают превращение одного из нейтронов в протон и испускание электрона, так и взаимодействие, которое вызывается так называемыми нейтральными токами. С помощью нейтральных токов может действовать не только электронное нейтрино, а и мюонные и тау-нейтрино. Когда на основании теории и экспериментальных данных посмотрели вклад этих нейтральных токов, то всё сошлось буквально. Ликвидировалось противоречие между хлор-аргонным методом Дэвиса, данными «Камиоканде» и канадской обсерватории. То есть, фактически была зарегистрирована осцилляция нейтрино, во-первых. Во-вторых, было показано, что с Солнцем все в порядке. Нейтрино из Солнца принесли нам информацию, а потом японцы устроили опыт на реакторных нейтрино. У них в сто километров был реактор, кажется, Володя?
В.Л. Не один реактор, а все буквально имеющиеся в Японии реакторы давали вклад в установленный детектор.
С.Г. И обнаружили, что от реактора идет поток электронных антинейтрино, что он на нужном расстоянии уменьшился – они перешли в другой тип, а другой тип не вызывал соответствующей реакции.
В.Л. Кстати говоря, в связи с этим было отмечено, что если ставить новые эксперименты, более чувствительные, то нейтрино от реакторов будут просто мешать, фонить. Настолько сейчас, во-первых, повысилась чувствительность экспериментов, а во-вторых, атомная энергетика завоевывает себе все больше и больше места.
С.Г. Вообще, про японцев можно очень хорошие слова говорить. Сколько они посвящают усилий и средств выделяют на науку.
В.Л. Очень жестко они все регулируют, не надо их идеализировать…
С.Г. Но построили же они «Суперкамиоканде».
В.Л. Траты были по минимуму, у нас затраты были бы в десять раз больше.
А.Г. Все-таки, возвращаясь к верхнему пределу установленной вами массы нейтрино. Это 2 электрон-вольта, да?
В.Л. Да.
А.Г. И она, вероятно,
В.Л. Да, я два слова хотел сказать …
С.Г. Я только перед этим еще раз тебя перебью, извини, Володя. Осцилляция показывает разность квадратов масс и достоверно говорит о том, что, по крайней мере, какие-то нейтрино обладают массой, поэтому страшно интересно идти дальше, опускаться ниже.
В.Л. К сожалению, следующий прибор, который обладает гораздо лучшей чувствительностью, построен по той же схеме, будет сооружаться в Германии, в исследовательском центре Карлсруэ. Мы участвуем в этом, но, к сожалению, как партнеры второго сорта, потому что не можем дать нужного количества денег. Но идейное, так сказать, участие – стопроцентное.
А.Г. То есть по схеме Троицкого будет построен…
В.Л. Да, по схеме Троицкого, вот он изображен здесь. Диаметр здесь показан в 7 метров, сейчас собираются делать все-таки в десять метров. Это будет спектрометр, который позволит добраться до десятой электрон-вольта по массе. Будем надеяться, что это действительно произойдет, но требования, которые при этом предъявляются к самому спектрометру – исключительные. То есть надо сделать сосуд диаметром 10 и длиной 30 метров, с вакуумом 10 в минус 11-ой миллибара – такого еще нигде не делалось. Делался вакуум в небольших объемах, 10 минус 11-й, или делался большой объем с плохим вакуумом, а чтобы и сверхвысокий вакуум, и громадный объем – такого не делалось.
С.Г. Это холодное всё будет.
В.Л. Это будет охлаждаться до температуры минус 20…
А.Г. Тут крионасос стоит…
С.Г. И с газовым источником…
В.Л. Да, с газовым источником. Причем, из-за того что трубочка получается не 20 миллиметров, а 100 миллиметров, приходится длину его увеличивать в семь раз – для того чтобы исключить попадание трития в спектрометр. Такой проект в настоящий момент принят, идет его проработка.
А.Г. А сколько лет уйдет на создание такого прибора?
В.Л. Мы собираемся делать это где-то в 2007-2008 годах. Но можно ошибиться, потому что проблема действительно серьезная.
А.Г. И серьезные проблемы все-таки возникают с дефицитом массы вещества во Вселенной. Раз на нейтрино мы не можем его списать, что ж делать?
С.Г. Вот это и есть, по-моему, начало новой революции в естествознании. В 2003 году опубликованы данные так называемого «WMAP». Это спутниковый эксперимент, который изучал неоднородность реликта. Эта неоднородность на уровне нескольких единиц на 10 в минус 5-ой.
А.Г. Да, мы здесь даже видели карту, нам показывали.
С.Г. В каком-то смысле, все эти идеи опять же идут из России. Академики Сюняев и Зельдович в 70-ом году обратили внимание, что в момент, когда происходит рекомбинация водорода, когда температура такая, что электроны захватываются протоном, образуются нейтральные атомы, то фотоны спокойно могут из этой плазмы выходить. А эта плазма сама по себе неспокойна, в ней есть звуковые колебания, и отсюда возникают угловые неоднородности реликтового излучения. А по параметрам этих неоднородностей можно определить и полную массу вещества Вселенной…
Брачный сезон. Сирота
Любовные романы:
любовно-фантастические романы
рейтинг книги
Адвокат империи
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Измена. Верни мне мою жизнь
Любовные романы:
современные любовные романы
рейтинг книги
На границе империй. Том 5
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
Бастард Императора. Том 2
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
На изломе чувств
Любовные романы:
современные любовные романы
рейтинг книги
Буревестник. Трилогия
Фантастика:
боевая фантастика
рейтинг книги
Убивать чтобы жить 6
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
рейтинг книги
Приватная жизнь профессора механики
Проза:
современная проза
рейтинг книги

Башня Ласточки
6. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Два мира. Том 1
Фантастика:
фэнтези
попаданцы
мистика
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
