Дискретная математика без формул
Шрифт:
И все бы хорошо, только такая строго заданная теория мало что дает создателю, кроме радости созидания. Поэтому встает вопрос целесообразности, смысла. Той самой семантики… Здесь логики заняли очень( !) интересную позицию.
Коль скоро логика не интересуется смыслом высказываний, а лишь их истинностью, то ее (истинность) и об'явили смыслом высказываний. Вдумайтесь, смысл высказывания, например, «Газ при нагревании расширяется» не в том, что это отражение физического закона, а в том что оно истинно. Следовательно, точно такой же смысл( !)
Дальше – больше. Язык предикатов – это существенное расширение языка высказываний и обычным образом перебрать все случаи даже в простейшей ситуации, вроде «Икс любит кашу», не всегда возможно. Тем более, что речь может идти и о бесконечностях. Для решения проблем семантики в этом случае прибегают к теории моделей. Но это теория также, в конечном итоге, упирается в «смысл» типа истинно-ложно.
Возвращаясь к аксиоматическим теориям следует сказать, что в математике «практический смысл» имеют лишь такие теории, в которых можно выводить только истинные формулы. И нельзя ложные.
Одна ложная формула «уничтожает без остатка» любую аксиоматическую теорию.
Наша теория, созданная из буквы Я, не привязана к понятию истинности. Поэтому она бессмысленна, как бессистемная перестановка детских кубиков.
С кубиками все ясно. Но проблемы аксиоматических теорий на этом не исчерпываются. Пожалуй самым фундаментальным открытием в этой сфере следует считать доказанную Геделем ТЕОРЕМУ О НЕПОЛНОТЕ. Оказывается, в сколько-нибудь сложной аксиоматической системе (посложнее, чем кубики, но достаточно даже арифметики) существуют формулы, которые нельзя ни доказать, ни опровергнуть. Может в этом причина, что не все школьные задачки имеют решения?!
Так что, создавая свои аксиоматические теории помните, что они должны обладать какими-то полезными свойствами. А такие теории создавать уже не так-то просто. Хотя создать свою собственную математику может каждый!
Известно высказывание одного крупного математика: «Преимущество аксиоматизации – это преимущество воровства перед честным трудом».
Лекция 11. ТЕОРИЯ АЛГОРИТМОВ
Теория алгоритмов не учит «составлять» алгоритмы. Она занимается более важным вопросом. Основная задача классической теории алгоритмов – это ответ на вопрос: «Можно ли (вообще) для задач данного типа построить алгоритм?». Говоря более наукообразно: «Являются ли задачи данного типа алгоритмически разрешимыми»?
Это связано с тем, что, во-первых, не для всех задач возможно создать алгоритмы их решения. А, во-вторых, чтобы сделать математически строгий вывод о невозможности построить алгоритм, надо иметь строгое (формальное) определение самого алгоритма. Но понятие АЛГОРИТМАотносится к фундаментальным неопределяемым понятиям. В вопросе об алгоритме у нас собачья позиция. Понимать понимаем, а сказать не можем. Если где-то встречаете «определение» алгоритма, то там, что ни слово – то аллегория…
Из этого тупика был найден нетривиальный выход. Понятие алгоритма
Эти математические модели выступают в роли «конкретизаций понятия алгоритма». То есть длительная практика подтверждает так называемый тезис Черча, который можно пересказать так:
Для любой алгоритмически разрешимой задачи можно построить рекурсивную функцию (машину Тьюринга, нормальный алгорифм Маркова). И наоборот, для задач, для которых нельзя построить перечисленные конкретизации, не существует алгоритма решения.
РЕКУРСИВНЫЕ ФУНКЦИИоснованы на той идее, что исходные данные и возможные результаты решения любой задачи можно пронумеровать. Для чего, естественно, достаточно множества натуральных чисел (целых положительных чисел, начиная с нуля). А далее базовыми об'являются функции, возможность выполнить (вычислить) которые не вызывает сомнений.
НУЛЬ– ФУНКЦИЯ– это функция, которая дает значение ноль для любого значения аргумента. Реализовать эту функцию может не только ребенок. Можно посадить попугая и подучить его на любой вопрос о значении функции кричать «Ноль!».
ФУНКЦИЯ СЛЕДОВАНИЯдает следующее, по сравнению с аргументом, значение. Для пяти это шесть, для миллиона – миллион один. Можно бы было сказать, что здесь надо просто прибавлять 1.
Но операции сложения у нас пока нет!
ФУНКЦИЯ ВЫБОРА АРГУМЕНТА. Это вообще забавная даже для первоклассника функция, содержащая в своем имени номер аргумента. Если у вас есть несколько аргументов, то эта функция в качестве значения возьмет значение указанного в ней аргумента. Например, функция выбора третьего из Иванова, Петрова и Сидорова, которых мы ранее пронумеровали, например, как 22, 13 и 49, даст значение 49.
Эти три базовых функции могут использоваться далее в качестве исходного материала для создания более сложных функций с помощью трех операторов: суперпозиции, примитивной рекурсии и наименьшего корня.
Известный хорошо еще со школы ОПЕРАТОР СУПЕРПОЗИЦИИпозволяет вместо аргумента подставлять функцию… «Игла в яйце, а яйцо в ларце»…
Дольше словами описывать ОПЕРАТОР ПРИМИТИВНОЙ РЕКУРСИИ. Но если поднатужиться, то можно понять. Этот оператор позволяет построить новую функцию из двух функций, одна из которых имеет на один аргумент меньше, а другая на один аргумент больше.
Значение создаваемой функции для нулевого значения выбранного аргумента приравнивается к функции, не имеющей как раз этого аргумента. Значение же создаваемой функции для всех прочих
(ненулевых) значений выбранного аргумента приравнивается другой функции, зависящей (напрягитесь!) от тех же аргументов, кроме выбранного; от ПРЕДЫДУЩЕГОзначения выбранного аргумента и от создаваемой функции от предыдущего значения выбранного аргумента.
Ну как тут не пожалеть о формулах.