Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа
Шрифт:
B: Менее доходный с доходностью <R>B = 0.0144, но и менее рискованный с риском SB = 0.061.
На графике «Риск-Доходность» эти активы на рис. 5 изображены крупными синими точками. По горизонтальной оси графика отложены риски S, а по вертикальной оси средние доходности <R>.
Рис. 5. График "Риск-Доходность для двух активов.
Оба актива на рассматриваемом интервале времени имеют свои временные
Здесь M, это количество торговых дней, за которые анализируется поведение этих двух активов, то есть M торговых дней, это тот интервал, за который вычислены доходности и риски активов A и B.
А портфель из этих двух активов, в свою очередь, сам тоже имеет свой ряд доходностей в эти же самые M дней:
А значит, портфель, состоящий из этих активов, имеет свою среднюю доходность и свой риск на этом же интервале M дней. И мы можем на графике «Риск-Доходность» нарисовать точку, которая соответствует этому портфелю. Положение этой точки зависит от того, как инвестор распределил свои средства по активам A и B.
Если инвестор распределил свой начальный капитал по активам A и B так, что на долю своих средств WA он купил актив A, а на долю WB купил актив B, то этой покупкой инвестор зафиксировал количество активов A и B в своем портфеле. Так как цены этих активов могут изменяться, то в портфеле могут изменяться и доли финансов инвестора между активами A и B. Но количество купленных активов и их соотношение не меняются, так как инвестор ничего не продает из портфеля и ничего не докупает в свой портфель в течение M дней.
Так как доходность, это относительная величина и она не зависит от количества купленных активов, то доходность портфеля в m– й день линейно зависит от доходностей двух активов в m– й день с коэффициентами пропорциональности равными долям начального распределения средств инвестора по активам:
Подставив, это выражение в две последние формулы предыдущего раздела, получаем:
Здесь CAA, CBB и CAB, это элементы матрицы ковариаций доходностей (см. Приложение П.5.2) активов A и B.
Как уже говорилось выше, WA, это доля финансов, которая пошла на покупку актива A, а WB, это доля средств, которая была вложена в актив B. Эти доли принято называть весовыми коэффициентами или просто весами активов.
Все эти веса могут меняться только в пределах от 0 до 1:
Это
В теории отрицательные веса соответствуют шортовым продажам. В данной книге такие ситуации не рассматривается, так как книга посвящена не трейдингу, а инвестированию.
Сумма всех весов обязательно всегда должна быть равна единице:
Последнее условие называется условием нормировки на единицу.
Если вес какого-то актива равен 1, значит, веса всех других активов должны быть равны 0. То есть портфель состоит только из одного актива, а все другие рассматриваемые активы в нет отсутствуют.
По диагоналям ковариационной матрицы С всегда стоят дисперсии активов. Стандартные отклонения (риски) активов, это, как раз, корни квадратные из дисперсий. Значит, формулу риска для портфеля с двумя активами можно переписать так:
Связь коэффициента корреляции CorrAB со взаимной ковариацией CAB следующая (см. Приложение П.5.3):
Поэтому формулу для риска портфеля из двух активов, в общем случае, можно еще переписать так:
Посмотрим, какой будет риск портфеля с этими активами в зависимости от того, как коррелируют между собой доходности этих активов.
1.2.2.1. Коэффициент корреляции Corr=1
Пусть временные ряды доходностей активов A и B очень сильно коррелируют между собой с коэффициентом корреляции CorrAB=1.0. В этом случае в формуле для риска под квадратным корнем получаем полный квадрат, и квадратный корень извлекается. И тогда общий риск портфеля с двумя сильно коррелированными активами будет:
Получается, что для сильно коррелирующих активов риск портфеля, это просто взвешенный риск его активов. На графике «Риск-Доходность» на рис. 5 в этом случае получаем портфели на черном отрезке между точками A и B. Каждая точка черного отрезка соответствует своему соотношению весовых коэффициентов WA и WB.
Например, если 50 % всех своих финансов инвестор вложит в актив A и 50 % в актив B, то получаем портфель, показанный черной точкой на черном отрезке. Эта точка лежит в середине черного отрезка. У такого портфеля с равными вложениями в 2 актива с нашими данными получились следующие средняя доходность <R> и средний риск S:
Теперь посмотрим на еще одном синтетическом примере, как это всё выглядит на временных графиках. На рис. 6. показано поведение цен двух активов с сильной корреляцией их доходностей за 43 торговых дня.