ДНК и её человек
Шрифт:
Статья Херши и Чейз вышла в 1952 г. [8] В то время уже никто не сомневался, что носителем информации должна быть именно ДНК. Было известно, какие компоненты входят в ее состав, была известна загадочная закономерность, именуемая правилом Чаргаффа: в ДНК попарно равны концентрации гуанина и цитозина, аденина и тимина. Оставалось понять, как все это организовано в пространстве, как устроена молекула. И началась большая гонка, описанная в книге Джеймса Уотсона “Двойная спираль”. Победили в ней, как всем известно, Уотсон и Фрэнсис Крик.
8
Hershey A., Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage // J Gen Physiol. 1952; 36 (1): 39–56; doi: 10.1085/jgp.36.1.39. PMC 2147348.
Помогли
Поглядев на рентгенограммы Розалинд Франклин (особенно важную роль сыграла легендарная “фотография № 51”), Уотсон и Крик выдвинули предположение, что ДНК состоит из двух нитей, соединенных друг с другом азотистыми основаниями и закрученных одна вокруг другой. К 28 февраля 1953 г. Уотсон и Крик уже были уверены в своей правоте; Крик даже заявил в местном пабе, что они “раскрыли секрет жизни”. Их знаменитая статья [9] вышла 25 апреля 1953 г. (таким образом, в 2018 г. человечество отметило 65 лет знакомства с двойной спиралью). Статья заканчивалась горделиво-скромно: “От нашего внимания не ускользнуло, что специфическое взаимодействие, которое мы постулировали, сразу же предоставляет возможный механизм копирования генетического материала”. Действительно, двойная спираль не только соответствовала рентгенограмме, полученной Франклин, но и давала ответ на самый главный вопрос – каким образом информация копируется и передается по наследству!
9
Watson J. D., Crick F. H. C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid // Nature. 1953; 171, 737–738.
Морис Уилкинс, получивший Нобелевскую премию 1962 г. вместе с Уотсоном и Криком, не участвовал в построении модели, но работы по изучению структуры ДНК, в том числе и работа Розалинд Франклин, были начаты во многом благодаря ему. Сама же Франклин не дожила до вручения премии – она умерла от рака в 1958 г. в возрасте 37 лет.
Теперь два абзаца биохимии, чтобы подвести итог достижениям отцов (и матерей) молекулярной биологии. Постарайтесь это пережить, а кому не хочется – просто посмотрите на рис. 4 (справа) и переходите к следующей главе. Молекула пятиатомного углевода дезоксирибозы в составе ДНК замкнута в цикл, к ней присоединены азотистое основание и фосфат. Атомы углерода в дезоксирибозе пронумерованы, от одного до пяти; цифры помечены штрихами (в отличие от углеродов азотистого основания, которые пронумерованы без штрихов). К 5’ – углероду присоединен “собственный” фосфат нуклеотида, к 3’ – углероду – фосфат другого нуклеотида, соседа по цепочке. По ним названы и концы нуклеотидной цепи – 5’ – и 3’ – конец. “Начало” цепи, ее “левый” конец (мы читаем слева направо, и последовательность нуклеотидов в ДНК нам удобнее записывать таким же образом) – это 5’ – конец. Любая цепочка ДНК (или РНК) растет от 5’ – к 3’ – концу – новый нуклеотидный остаток всегда присоединяется к 3’ – атому.
Азотистые основания – это то, благодаря чему четыре нуклеотида различаются между собой (остатки дезоксирибозы и фосфаты у всех нуклеотидов одинаковые). Два больших, аденин и гуанин (см. рис. 4), называются пуринами, а два маленьких, с одним шестичленным циклом – тимин и цитозин – пиримидинами. Это и есть те самые “буквы” А, Т, G, С, которыми записывается генетическая информация. Что существенно – этими нуклеотидами две цепочки двойной спирали держатся друг за друга. Напротив аденина всегда стоит тимин, а напротив гуанина – цитозин.
Теперь мы знаем, что такое ген!
Следующие десятилетия тоже прошли не зря. Структура молекулы – это прекрасно, однако надо было понять, каким образом ДНК копируется (реплицируется), как записанная в ней информация превращается в признаки.
Наиболее важное и удивительное свойство двойной спирали – это, конечно, заложенная в ее структуре способность к самокопированию. Если разделить две нити, то на каждой можно начать строить ее копию, в итоге получить вместо исходной двойной спирали две одинаковые и по-сестрински разделить их между сестринскими клетками. Или построить на определенном участке ДНК молекулу матричной РНК (мРНК) – инструкцию для синтеза белка. Ура, наконец-то мы узнали, что такое ген – фрагмент ДНК, в котором записана последовательность аминокислот определенного белка, плюс регуляторные участки, через которые происходит включение и выключение гена. (Правда, есть и такие гены, которые кодируют не матричную РНК и через нее белок, а просто РНК, имеющую самостоятельные функции.)
Разобрались с репликацией ДНК, расшифровали генетический код, то есть разгадали, каким образом можно записывать последовательности из 20 аминокислот четырьмя нуклеотидами. Оказалось, природа использует элегантный шифр – каждой аминокислоте соответствуют три нуклеотида; таких комбинаций существует, как нетрудно подсчитать, 64, поэтому одной аминокислоте могут соответствовать несколько триплетов – код вырожденный, как говорят математики.
Стало понятно, что ДНК в ядре клетки – это библиотека, в которой книги не выдают на дом, но позволяют снимать копии и забирать с собой. Или, в современных образах, – магазин электронных книг, который может продать бесконечное количество экземпляров той или иной книги в удобном для чтения формате. Копии книг – это матричные РНК, рибосомы (клеточные машинки для синтеза белка) читают их по триплетам и в соответствии с этими триплетами строят белок. Таким образом, поток информации идет в направлении от ДНК к РНК и затем от РНК к белку. Это и есть центральная догма молекулярной биологии, которую сформулировал Фрэнсис Крик в 1958 г.
Возможно, “догма” не самое подходящее слово. Как писал историк молекулярной биологии Хорас Джадсон в книге “Восьмой день творения” (The Eighth Day of Creation) о своем разговоре с Фрэнсисом Криком: “«Я имел в виду, что догмой называют идею, для которой нет обоснованных подтверждений. Понимаете?!» Крик издал восторженный рев. «Да я просто не знал, что значит «догма»! И мог бы с тем же успехом назвать ее Центральной Гипотезой или как-то в этом роде. Это я и хотел сказать. Догма – только слово-крючок»”. В любом случае сегодня центральная догма “ДНК -> РНК -> белок” ни у кого не вызывает ни малейших сомнений: обоснованных подтверждений более чем достаточно. Хотя теперь известно, что информация может передаваться от РНК к ДНК (например, в жизненном цикле некоторых вирусов с РНК-геномом), общей картины это не меняет. Магистральный поток информации направлен от ДНК к белкам – строителям и строительным материалам всего живого.
Как читать ДНК
Фредерик Сенгер и его метод секвенирования
Конечно, все захотели читать ДНК – черпать информацию о жизни прямо из источника. Но как читать буквы, если эти буквы – молекулы?
Необходим был удобный метод определения нуклеотидной последовательности, и такие методы стали появляться. Правда, большая часть их сегодня имеет лишь историческую значимость: для нынешних биологов “плюс-минус” секвенирование или “секвенирование по Максаму – Гилберту методом химической деградации” – что-то вроде микроскопа Левенгука.
Слово “секвенирование”, собственно, и означает “определение последовательности” (от англ. sequence); говорят о секвенировании ДНК, РНК, белков. Предложенное в 1970 г. секвенирование по Максаму – Гилберту, если коротко, подразумевало расщепление ДНК в растворах, организованное таким образом, чтобы получались молекулы всех возможных длин. Но это не самый рациональный подход. ДНК – именно та молекула, которая умеет копироваться сама на себе. Если взять у клетки ферменты, которые работают с ДНК, и научиться их использовать в наших целях, можно добиться многого. Почему бы, например, вместо того чтобы нарезать ДНК столькими способами, сколько в ней букв, не нарастить на ней дочерние цепи всех возможных длин? На этой идее основано секвенирование по Сенгеру – метод, также изобретенный в 70-е гг. прошлого века и благополучно доживший до наших дней.