Догонялки с теплотой
Шрифт:
И всё это – из-за концепции о тепловых эффектах химических реакций, как результатах приращений энергии химических связей. Больше этим тепловым эффектам, как полагают, браться неоткуда. Тепло при горении дров, бензина и напалма, при взрыве гремучего газа и детонации тринитротолуола – всё это, мол, благодаря тому, что энергии химических связей у конечных веществ больше, чем у исходных. Кстати, определение теплот сгорания является одним из важнейших методов нахождения энергий химических связей. Поэтому, если кто попробует проверить по справочникам – соответствует ли теплота сгорания того или иного вещества балансу энергий химических связей у исходников и продуктов горения – то будьте спокойны: соответствие там гарантировано. Работали профессионалы!
Обращаемся к этим профессионалам: возьмите случай простой двухатомной молекулы с одинарной химической связью. Говорить об энергии этой связи физически бессмысленно, потому что её величина – в любом состоянии молекулы – оказывается многозначной. Вот у атомов, там всё без дураков, энергия связи однозначна: если, из текущего состояния, атом ионизируется при возбуждении, скажем, на 10 эВ, то он ионизируется и при любой большей энергии возбуждения. А у молекул – всё по-другому. Скажем, молекула
А вот нас это нисколько не смущает: мы-то полагаем, что молекулярные спектры поглощения-излучения не имеют никакого отношения к энергиям химических связей – и по весьма простой причине: энергии химических связей, как отдельной формы энергии, не существует. Конечно, молекулы имеют запас устойчивости, которую обеспечивает циклический процесс химической связи. Но между молекулярными и атомарными структурами имеется принципиальное различие. Набор стабильных атомов – весьма ограничен, а стабильные молекулы могут быть какие угодно – позволяли бы физические параметры окружающей среды. Почему это так? Да вот же: ядерные и атомарные структуры напрямую формируются структуро-образующими алгоритмами, которые превращают в энергию связи часть собственных энергий, т.е. масс, связуемых частиц (оттого и дефект масс получается). А образование молекул пущено на самотёк, и энергия на их связи не предусмотрена. При образовании структуры, имеющей энергию связи, соответствующая энергия «выделяется» - например, при рекомбинации атома, излучается свет. А, при образовании молекулы, ничего подобного не происходит. Правда-правда! Бывает, конечно, что, в результате химической реакции, тот или иной продукт оказывается возбуждён – и скромно высвечивается. Но это – совсем другое!
Видите, как стройно получается: энергии химических связей не существует, поэтому не страшно, что через энергии химических связей не объяснить тепловые эффекты – которые, в свою очередь, оказываются не выделениями-поглощениями тепла, а увеличениями-уменьшениями температуры… Остаётся чуть-чуть: пояснить, откуда эти увеличения-уменьшения температуры берутся. Легко! Только следует говорить о двух классах реакций с тепловыми эффектами. Во-первых, есть реакции с малым тепловым выходом. Они, как правило, обратимы – и если при прямой реакции температура увеличивается, то при обратной она уменьшается, так что возможно термодинамическое равновесие между прямой и обратной реакциями, когда температура смеси остаётся постоянной. Во-вторых, есть реакции с большим тепловым выходом – в частности, реакции горения. Они необратимы: здесь не бывает равновесий между прямой и обратной реакциями – причём, при обратной реакции не происходит эквивалентого понижения температуры. Термодинамика уже отчаялась объяснить эту загадку природы: почему реакции с малым тепловым выходом обратимы, а реакции горения – нет. А оно так просто: причины тепловых эффектов у этих двух классов реакций – разные!
Что касается реакций с малым тепловым выходом, то. наблюдая метаморфозы неодушевлённого вещества, мы видим, что в результате реакций синтеза, типа А+В®АВ, обычно происходит повышение температуры в зоне реакции, а в результате реакций распада, типа АВ®А+В, обычно происходит понижение температуры в зоне реакции. Пусть в закрытом сосуде находится смесь двух одноатомных газов, и пусть имеет место термодинамическое равновесие, при котором мощность, передаваемая стенкам сосуда при ударах по ним молекул газов, имеет некоторое определённое значение. Пусть в смеси газов начинается реакция синтеза – в ходе которой, очевидно, концентрация молекул уменьшается. Если при этом средняя кинетическая энергия молекул газов осталась бы прежней, то поток мощности от газов к стенкам уменьшился бы, и исходное равновесие нарушилось бы. На этот случай принцип Ле Шателье гласит: « если первоначальные условия, при которых система находится в состоянии равновесия, изменяются, то равновесие смещается в направлении, способствующем восстановлению первоначальных условий». Т.е., для восстановления первоначального потока мощности от газов к стенкам, средняя кинетическая энергия молекул газов должна возрастать – что и означает повышение температуры. Как мы помним, для такого повышения температуры не требуется внешнее воздействие, поскольку прирост кинетической энергии молекул обеспечивается за счёт их собственных ресурсов, т.е. за счёт перераспределения в сопряжённой паре энергий. Аналогично, в результате реакции распада, температура содержимого сосуда должна понизиться. Теоретически, полному превращению одноатомного газа в двухатомный соответствует увеличение его абсолютной температуры вдвое, а полному превращению двухатомного газа в одноатомный соответствует уменьшение его абсолютной температуры вдвое. Но это – идеализация; реальные тепловые эффекты значительно меньше. Вот; примерно так!
Что же касается реакций горения – о-о-о, это нечто! В школе детям показывают опыт: в разрыв цепи постоянного тока вносится пламя спиртовки – и амперметр откликается, показывая появление слабого тока в цепи. «Это потому, - объясняют детям, - что, из-за высокой температуры пламени, в нём появляется некоторое количество ионов, которые и обеспечивают прохождение электрического тока». Дети хорошо усваивают: высокая температура пламени первична, а ионы вторичны. Поэтому стратегия тушения пожаров до сих пор какая? Сбить температуру, и всё остальное приложится! А вот изобретатель Дудышев, наверное, прогулял тот урок, где показывали опыт с пламенем спиртовки… короче, высоковольтными импульсами, подаваемыми на электроды, он за миллисекунды
Ну, дяденьки, обхохочешься с вами. Вы не догадывались о том, что ионы, при своём движении, повышают температуру среды? А чем же, по-вашему, занимается заряженная частица, движущаяся в веществе? Напомним: такие частицы вы удачно называете «ионизирующими». Правда, ионизируют они лишь часть из тех, кто попадается им на пути, а остальных только возбуждают. Но ионизация и возбуждение – это прямые свидетельства о повышении температуры! Не так ли? А, может, вы не знаете про то, что ионов в пламенах гораздо больше тех количеств, которые могла бы обеспечить температура пламени? Вот же Семёнов привёл кучу фактов о том, что реакции горения происходят не через занюханные «активированные комплексы», а через ряд промежуточных радикалов: « Кондратьев и его сотрудники… показали, что в пламенах водорода при низких давлениях… где температуру пламени по желанию можно варьировать от 600 до 800 оС, присутствуют сравнительно очень большие концентрации радикалов ОН… Регистрация радикалов производилась методом спектров поглощения… концентрация ОН в сотни тысяч раз превышает термодинамически равновесные его значения при температурах пламён Кондратьева. Это доказывает, что ОН появляется в результате самой химической реакции, а не термической диссоциации». Нам возражали, что речь шла о нейтральных радикалах ОН. Ишь, чего придумали! Тогда и радикал Н, которого столько же, сколько и ОН, был бы не ионом, а нейтральным атомом водорода. И тогда, через спектр поглощения, было бы проще определять концентрацию именно атомарного водорода: его линии сильны, надёжно идентифицируемы, и, в отличие от молекулярных линий, не подвержены влиянию температуры, давления, и наличия примесей. Но нет, отчего-то исследователи работали именно с линиями ОН. Трудности любили, что ли?
И вообще: пламя – это плазма, или нет?! Если оно плазма, а не только плазмой называется – значит, ионы там непременно есть. А какие ионы доминируют в водородном пламени – если не ионы Н и ОН? Или этот вопрос ещё недостаточно изучен?
Как ни крути, а выходит, что лишь самые первые ионы порождаются высокой температурой – но далее именно ионы поддерживают пламя. Температура воспламенения – это такая температура, при которой становится возможен самоподдерживающийся процесс продуцирования ионов, в условиях действующих механизмов «отвода тепла» и обрывов цепей реакции. И причиной высокой температуры пламени является, конечно, не упрочение энергии химических связей – главной причиной оказывается наличие достаточного количества ионов, движение которых греет среду. Здесь, кстати, и разгадка того, почему не бывает равновесия между реакцией горения и обратной к ней реакции «с поглощением тепла»: промежуточные продукты реакции, ионы, при своём движении могут только нагревать среду, но не могут охлаждать её.
Напрашивается недоумённый вопрос: «А каков же тогда физический смысл у теплоты сгорания топлива?» Если раньше этот смысл был совершенно прозрачен – это, мол, разность энергий соответствующих химических связей – то теперь этот смысл теряется в дыму продуктов горения… Вот не надо – с больной-то головы на здоровую! Этот смысл не был прозрачен, ибо для его прозрачности требовалась, как минимум, однозначность энергий химических связей. Но выше уже говорилось, почему об этой однозначности не может быть и речи. А смысл теплоты сгорания топлива очень прост: одно и то же топливо можно сжигать очень по-разному, и чем эффективнее ионы будут работать как нагреватели, тем больше будет выход тепла. Вот почему теплота сгорания является принципиально «плавающей», зависящей от условий горения. На это теоретики пустили в оборот фальшивку, отвлекающую внимание на «неполное сгорание топлива». Теплота сгорания – она, мол, в справочниках даётся для полного сгорания. Если у вас тепловыход получается меньше – значит, у вас неполное сгорание. Диагноз окончательный и обжалованию не подлежит! Да, но иногда тепловыход получается и больше! Это, стало быть, как – сверхсгорание, что ли? О, нет, всё проще! Это значит, что в справочниках была величина всё-таки для неполного сгорания – сейчас всё быстренько подкорректируют. Жгите дальше!
Этот на редкость диалектический подход кажется совершенно непотопляемым. Одного лишь боятся теоретики: чтобы кто-нибудь не догадался, что этот их подход совершенно бессилен объяснить, отчего одно и то же вещество может либо гореть, либо взрываться, либо детонировать. Ну, положим, взрыв – это тоже горение, только при особо благоприятных условиях: взрыв – это цепная реакция горения, когда большинство цепей реакции не обрывается, а развивается. При взрыве, как показывают эксперименты, по гремучей смеси проходит ударная волна, которую гонит перед собой зона химической реакции. Детонация же внешне проявляется как гораздо более быстрый взрыв – но полагают, что качественных отличий между ними нет. Детонационную волну рассматривают как « комплекс, состоящий из ударной волны и зоны химической реакции, тепловыделение в которой поддерживает ударный фронт». Просто дух захватывает: в конденсированном взрывчатом веществе, при скорости ударного фронта в 2 км/с, скорость детонационного фронта может составлять 9 км/с и более – причём, в одном и том же образце регистрируется динамика сразу обоих этих фронтов, чем наглядно демонстрируется их различная природа. А нам до сих пор втюривают, что при горении, взрыве и детонации происходит одна и та же химическая реакция. Дяденьки, возьмите в левую руку маленький брикетик тротила. Пламенем спички его можно поджечь – и он будет безобидно гореть. А от малейшей искры он сдетонирует – мало не покажется. И это – одна и та же химическая реакция? А разница в их протекании чем обусловлена? Тем, что, в случае детонации, условия для реакции ещё благоприятнее, чем при взрыве – т.е. эти условия не просто благоприятные, а охренительно благоприятные? Но, ведь, ёлы-палы, брикетик-то один и тот же! В чём конкретно разница по благоприятности, дающая либо горение, либо детонацию? Да вот в чём эта разница: в грамотно подобранных коэффициентах в уравнениях – чтобы скорость фронта реакции составляла в первом случае миллиметры в секунду, а во втором – в миллион раз больше. Главное – чтобы теория согласовывалась с опытом!