Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:
Тем не менее во многих ситуациях даже при наличии идеального измерительного инструмента вам придется проводить многократные измерения, чтобы получить корректный результат. Дело в том, что существует еще один источник неопределенности [42] — статистический; это означает, что измерения необходимо проводить многократно, чтобы результатам можно было доверять. Даже точное измерительное устройство не всякий раз будет давать верное значение, а вот среднее значение при многократных измерениях сойдется к верному ответу. Систематическая погрешность управляет точностью измерений, тогда как статистическая погрешность влияет на их прецизионность. В идеале измерения должны
42
Часто используется термин «статистическая погрешность», когда говорят о неопределенности измерений, связанной с конечностью их числа. — Прим. авт.
Приведем знакомый и весьма важный пример, на котором можно практически рассмотреть все приведенные понятия, — испытания эффективности лекарственных средств. Врачи часто не хотят раскрывать (а может быть, и не знают) соответствующую статистику. Случалось ли вам испытывать острое разочарование от слов: «Иногда это лекарство помогает, а иногда нет»? Подобное заявление скрывает от вас массу полезной информации. Так, в нем ничего не говорится о том, как часто это лекарство срабатывает и насколько статистически та часть населения, на которой его испытывали, схожа с вами. После такого заявления очень трудно принять решение. Гораздо лучше было бы, если бы вам сказали, как часто это лекарство помогает людям, близким к вам по возрасту и физическому состоянию.
Разные люди по–разному реагируют на одни и те же лекарства, и это очень усложняет вопрос о том, как подействует то или иное лекарство на конкретного человека. Давайте для начала рассмотрим более простой случай и представим, что мы проводим испытания на одном человеке. В качестве примера возьмем аспирин и проверим, помогает ли он от головной боли.
Кажется чего проще: взять аспирин и посмотреть, сработает ли он. Но на самом деле все немного сложнее. Даже если вам стало лучше, откуда вы можете знать, что вам помог именно аспирин? Чтобы убедиться в этом, то есть понять, уменьшилась ли боль быстрее, чем без лекарства, вам нужно было бы сравнить самочувствие с ним и без него. Однако, поскольку вы либо приняли аспирин, либо нет, одного измерения будет недостаточно, чтобы получить ответ на вопрос.
Но способ получить его существует. Для этого нужно провести эксперимент много раз. Всякий раз, когда у вас заболит голова, вам следует бросить монетку и принять случайное решение о том, принимать на этот раз аспирин или нет. Результат, естественно, нужно зафиксировать. После достаточного количества испытаний вы сможете усреднить свои данные по различным типам головной боли и сопутствующим обстоятельствам (возможно, боль проходит быстрее, если вы накануне хорошо выспались); статистика поможет вам получить верный результат. Вероятно, в ваших измерениях не будет систематической погрешности, поскольку решение о приеме лекарства вы принимали на основании броска монетки, а выборка состоит из вас одного, поэтому результаты при достаточном количестве испытаний будут корректными.
Было бы здорово, если бы любое лекарство можно было испытать посредством такой простой процедуры. Однако большинство лекарств используется при лечении более серьезных заболеваний, чем головная боль, иногда даже смертельно опасных. А у многих лекарств есть долгосрочные последствия, поэтому провести много коротких испытаний на одном человеке невозможно, даже если очень хочется.
Так что обычно, когда биологи или врачи хотят проверить, насколько хорошо действует лекарство, они не испытывают его на одном–единственном человеке, хотя с точки зрения науки такой вариант был бы оптимальным. Им приходится мириться с тем фактом, что
Иногда вместо этого врачи используют уже существующие результаты, где никто не проводил тщательных испытаний, а просто собраны данные наблюдений за существующими группами людей, такими как жильцы одного дома. Затем им придется столкнуться с проблемой правильной интерпретации результатов. С такими исследованиями иногда трудно бывает гарантировать, что проведенные измерения отражают причинно–следственные связи, а не случайные совпадения или корреляции. Так, заметив у многих пациентов с раком легких желтые пальцы, можно сделать ошибочный вывод о том, что именно желтизна пальцев — причина рака легких.
Поэтому ученые предпочитают исследования, в которых методы лечения или дозы назначаются случайным образом. К примеру, исследование, в котором люди будут принимать лекарство по результатам броска монетки, будет меньше зависеть от выборки: ведь то, будет ли данный пациент принимать препарат, полностью зависит от случая. Точно так же при помощи рандомизированного исследования можно установить связь между курением, раком легких и желтизной пальцев. Если бы можно было случайным образом предписать, кто из членов группы будет курить, а кто нет, вы бы поняли, что курение — это по крайней мере один из факторов и желтизны пальцев у пациентов, и рака легких; при этом не важно, является ли одно причиной другого. Но, разумеется, такой эксперимент был бы неэтичным.
Везде, где это возможно, ученые стремятся упростить систему и выделить таким образом те специфические явления, которые хотят изучить. И для точности, и для прецизионности результата очень важен подбор как группы испытуемых, так и контрольной группы. Такой сложный параметр, как действие лекарства на биологию человека, определяется одновременно множеством факторов. Очень важно также, насколько достоверные результаты исследования нам нужны.
С КАКОЙ ЦЕЛЬЮ ПРОВОДЯТСЯ ИЗМЕРЕНИЯ?
Измерения не могут быть идеальными. В научных исследованиях — как и при принятии любого решения — нам приходится определять для себя приемлемый уровень неопределенности. Только в этом случае можно двигаться вперед. К примеру, если вы принимаете лекарство и надеетесь, что оно облегчит вам сильную головную боль, то вам, возможно, достаточно знать, что это лекарство помогает обычному человеку в 75% случаев. С другой стороны, если изменение стиля питания ненамного снизит ваши и без того невысокие шансы заболеть чем-нибудь сердечно–сосудистым (к примеру, с 5 до 4,9%), этого может оказаться недостаточно, чтобы убедить вас отказаться от любимых пирожных.
В политике точка принятия решения еще менее определенна. Как правило, общество смутно представляет, насколько хорошо нужно изучить вопрос, прежде чем менять законы или накладывать ограничения. Необходимые расчеты здесь осложнены множеством факторов. Как говорилось в предыдущей главе, из-за неоднозначности целей и методов провести сколько-нибудь достоверный анализ «затраты — прибыли» очень сложно, а иногда вообще невозможно.
Колумнист The New York Times Николас Кристоф, ратуя за осторожность в обращении с потенциально опасными химическими веществами типа бисфенол–А (ВРА) в пище или пищевой упаковке, писал: «Исследования ВРА уже несколько десятков лет бьют тревогу, а данные до сих пор сложны и неоднозначны. Такова жизнь: в реальном мире законодательные меры, как правило, приходится принимать на основании неоднозначных и спорных данных».