Чтение онлайн

на главную - закладки

Жанры

Достучаться до небес. Научный взгляд на устройство Вселенной
Шрифт:

В установке CMS адронный калориметр собран из слоев материала высокой плотности — бронзы или стали, — чередующихся с пластиковыми сцинтилляторными ячейками, которые регистрируют энергию и положение пролетающих сквозь них адронов по интенсивности сцинтилляции. В центральной части детектора ATLAS в качестве материала–поглотителя используется железо, но сам адронный калориметр работает примерно так же.

МЮОННЫЙ ДЕТЕКТОР

Самый внешний слой в любом универсальном детекторе элементарных частиц составляют мюонные камеры. Мюоны, как вы помните, — это заряженные частицы, похожие на электроны, но в 200 раз тяжелее. Ни электромагнитный, ни адронный калориметры не способны их остановить. Эти частицы, не обращая ни на что внимания,

летят прямиком в толстый внешний слой детектора (рис. 38).

Энергичные мюоны очень полезны в поиске новых частиц; в отличие от адронов, они достаточно изолированы, их траектории относительно легко регистрировать и измерять. Экспериментаторы хотят регистрировать все события с участием энергичных мюонов, разлетающихся в поперечном направлении, потому что самые интересные столкновения редко обходятся без их участия. Мюонные детекторы могут также оказаться полезными для регистрации любых других тяжелых и стабильных заряженных частиц, которым удастся добраться до внешних пределов детектора.

РИС. 38. В CMS мюонный детектор встроен в ярмо магнита. Снимок сделан в период строительства

Мюонные камеры регистрируют следы мюонов, достигших внешнего слоя детекторов. В некоторых отношениях мюонный детектор похож на внутренний — те же трекеры и магнитные поля, которые отклоняют мюоны от прямой, чтобы можно было измерить изгиб траектории и импульс частицы. Однако магнитное поле в мюонных камерах отличается от поля во внутренних трекерах, да и сам детектор намного толще, что позволяет измерять даже очень небольшую кривизну траектории и, соответственно, регистрировать частицы с более высоким импульсом (их полет в магнитном поле меньше отклоняется от прямой). В CMS мюонные камеры занимают пространство от трех метров до внешнего радиуса детектора — примерно 7,5 м; в ATLAS они начинаются на четырех метрах и тянутся до внешних пределов детектора — до 11 м. Эти громадные конструкции позволяют измерять положение частиц с точностью до 50 мкм.

ТОРЦЕВЫЕ ЧАСТИ

Последние элементы детектора, о которых мы еще не говорили, — оконечные элементы, детекторы на переднем и заднем концах экспериментальной установки (на рис. 39 можно увидеть их примерную структуру). Теперь мы будем двигаться не по радиусу от луча наружу — последним этапом в этом направлении были мюонные детекторы, — а вдоль оси цилиндра к его концам и ограничивающим их «крышкам». Цилиндрическая часть установки «закупорена» там специальными детекторами, назначение которых—обеспечить регистрацию максимального числа частиц. Оконечные элементы устанавливались на место последними, поэтому в 2009 г. при посещении коллайдера я с такой легкостью рассматривала слоеный пирог внутреннего устройства детекторов.

Дополнительные детекторы на торцевых частях детекторного цилиндра установлены для того, чтобы экспериментаторы могли быть уверены: детектор регистрирует импульсы всех без исключения частиц. Их цель — замкнуть пространство экспериментальной установки, сделать его герметичным и не оставить нигде пропусков и неучтенных отверстий. Герметичные измерения гарантируют, что будут обнаружены даже не взаимодействовавшие или очень слабо взаимодействовавшие частицы. Если наблюдается «недостающий» поперечный импульс, это означает, что при столкновении должна была образоваться одна или несколько частиц, не вступающих в непосредственно обнаружимые взаимодействия. Подобные частицы обладают импульсом, и импульс, который они уносят с собой, сообщает экспериментаторам об их существовании.

РИС. 39. Компьютерное изображение детектора ATLAS. Показаны многочисленные слои и отдельно оконечные элементы. (Публикуется с разрешения CERN и ATLAS.)

Если нам известно, что детектор регистрирует и измеряет все поперечные

импульсы — и при этом после столкновения создается впечатление, что импульс, направленный перпендикулярно пучку, не сохраняется, — это означает, что какие-то частицы остались незамеченными и унесли с собой часть импульса. Мы уже видели, что детекторы очень точно измеряют импульс в перпендикулярной плоскости. Калориметры в передней и задней областях обеспечивают герметичность и гарантируют, что незамеченной может остаться лишь очень малая часть энергии или импульса, перпендикулярных пучку.

Установка CMS имеет в своих торцевых областях стальные поглотители и кварцевые нити, которые еще плотнее и потому лучше разделяют направления движения частиц. Латунь в оконечных элементах — вторичное сырье; прежде она применялась в российских артиллерийских снарядах. В передней части установки ATLAS используются калориметры на жидком аргоне, способные регистрировать не только электроны и фотоны, но и адроны.

МАГНИТЫ

В обоих детекторах осталось еще несколько компонентов, которых имеет смысл описать подробнее, — это магниты. Магнит — не детекторный элемент в том смысле, что непосредственно он не регистрирует никаких характеристик частиц. Однако магниты необходимы для регистрации частиц; они помогают определить импульс и заряд, без которых невозможно распознать частицы и их треки. Магнитное поле отклоняет движущиеся заряженные частицы, поэтому их треки получаются изогнутыми, а не прямыми. Насколько сильно и в каком направлении они отклоняются, зависит от энергии и заряда каждой частицы.

Громадный соленоидный магнит CMS изготовлен на основе замороженной сверхпроводящей ниобиево–титановой катушки длиной 12,5 м и диаметром 6 м. Этот магнит (самый большой в мире магнит такого типа) — главная, определяющая деталь детектора. Витки проволоки в соленоиде намотаны на металлический сердечник и при пропускании тока генерируют магнитное поле. По заключенной в нем энергии этот магнит соответствует примерно полутонне взрывчатки. Само собой разумеется, на случай сбоя и внезапной потери сверхпроводимости приняты особые меры предосторожности. В сентябре 2006 г. было проведено успешное испытание соленоида с напряженностью поля 4 Тл, но на самом деле он будет работать с полем несколько меньшей напряженности — 3,8 Тл; инженеры надеются, что это увеличит срок службы устройства.

Соленоид достаточно велик, чтобы трекеры и калориметры можно было разместить внутри него. Мюонные детекторы, с другой стороны, располагаются снаружи, вдоль внешней поверхности детектора. При этом четыре внутренних слоя мюонного детектора вплетены в громадную железную конструкцию, которая окружает магнитную катушку; эта конструкция сдерживает и направляет магнитное поле, обеспечивая его однородность и стабильность. Конструкция длиной 21 м и диаметром 14 м простирается до полного семиметрового радиуса детектора. По существу, она тоже является частью мюонной системы — ведь по идее только мюоны из всех известных заряженных частиц способны преодолеть 10 000 т железа и пройти сквозь мюонные камеры. (На самом деле энергичные адроны тоже иногда проходят сквозь все это, доставляя экспериментаторам головную боль.) Магнитное поле ярма отклоняет мюоны во внешнем детекторе. Поскольку степень отклонения мюона в магнитном поле зависит от его импульса, ярмо необходимо для измерения импульсов и энергий этих частиц. Структурно стабильный громадный магнит играет и еще одну важную роль. Он является несущей конструкцией установки и защищает ее от гигантских сил, порожденных ее собственным магнитным полем.

Магнит детектора ATLAS сконфигурирован совершенно иначе. В этом детекторе используются магниты двух разных систем: соленоид на 2 Тл, окружающий систему трекеров, и громадные тороидальные магниты во внешней части детектора, слои которых перемежаются со слоями мюонных камер. Если взглянуть на фотографию ATLAS (или на саму установку), то самыми заметными элементами окажутся восемь громадных тороидальных структур (см. рис. 34) и два дополнительных тороида, прикрывающих концы цилиндра. Генерируемое ими магнитное поле тянется на 26 м вдоль оси пучка и на 11 м от начала мюонного спектрометра в радиальном направлении.

Поделиться:
Популярные книги

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Адвокат Империи 7

Карелин Сергей Витальевич
7. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Адвокат Империи 7

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Двойник Короля 2

Скабер Артемий
2. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля 2

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

И вспыхнет пламя

Коллинз Сьюзен
2. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.44
рейтинг книги
И вспыхнет пламя

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Неучтенный. Дилогия

Муравьёв Константин Николаевич
Неучтенный
Фантастика:
боевая фантастика
попаданцы
7.98
рейтинг книги
Неучтенный. Дилогия

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10