Думай медленно... решай быстро
Шрифт:
В формулировке Задачи 1 имплицитно содержится точка отчета, в соответствии с которой болезнь может унести 600 жизней. Среди возможных исходов – точка отсчета и два возможных выигрыша, определяемых количеством спасенных жизней. Как и ожидалось, предпочтение отдается неприятию риска: очевидное большинство респондентов предпочли гарантированное спасение 200 жизней игре, в которой с вероятностью 1/3 будут спасены 600 жизней. Теперь рассмотрим другую задачу, в которой та же история сопровождается другой формулировкой возможных исходов двух программ.
Задача 2 (N=155)
Если будет принята программа В, 400 человек умрут (22%).
Если будет принята программа Г, с вероятностью 1/3 никто не умрет и с вероятностью 2/3 умрут 600 человек (78%).
Легко
Инвариантность терпит неудачу повсеместно и постоянно. Опытные респонденты допускают ошибки не реже неискушенных испытуемых, и эффект сохраняется, даже если респонденты отвечают на второй вопрос через несколько минут после первого. Респонденты, которым разъяснили несоответствие ответов, обычно бывают озадачены. Даже перечитав задачи, они все равно готовы к неприятию риска в версии со «спасенными жизнями» и стремятся к риску в версии с «потерянными жизнями»; при этом они хотят соблюдать инвариантность и дать согласованные ответы по обеим версиям. При таком упорстве эффекты установления рамок («фрейминга») больше напоминают иллюзии восприятия, чем ошибки вычислений.
Следующая пара задач показывает предпочтения, нарушающие требования доминантности рационального выбора.
Задача 3 (N=86)
Выберите вариант:
Д. Выиграть 240 долларов с вероятностью 25% и проиграть 760 долларов с вероятностью 75% (0%).
Е. Выиграть 250 долларов с вероятностью 25% и проиграть 750 долларов с вероятностью 75% (100%).
Очевидно, что Е предпочтительнее Д. Соответственно, все респонденты сделали этот выбор.
Задача 4 (N=150)
Представьте, что вам нужно принять два решения одновременно.
Сначала изучите оба выбора, затем укажите, что вы предпочтете.
Выбор 1
А. Гарантированно получить 240 долларов (84%).
Б. Выиграть 1000 долларов с вероятностью 25% и не получить ничего с вероятностью 75% (16%).
Выбор 2
В. Гарантированно потерять 750 долларов (13%).
Г. Потерять 10 00 долларов с вероятностью 25% и не потерять ничего с вероятностью 75% (87%).
Как и ожидалось из предварительного анализа, значительное большинство предпочли неприятие риска и гарантированный выигрыш позитивной игре в первом решении; еще больше респондентов предпочли стремление к риску и игру гарантированным потерям во втором решении. 73% респондентов выбрали А и Г, и только 3% выбрали Б и В. Такая же картина наблюдалась в модифицированной версии задачи, с уменьшенными ставками, в которой студенты выбрали реальную игру.
Поскольку респонденты рассматривали в Задаче 4 два решения одновременно, они продемонстрировали предпочтение А и Г перед Б и В. Однако выбранная связка в действительности уступает отвергнутой. Прибавка гарантированного выигрыша 240 долларов (вариант А) к варианту Г дает вероятность 25% выиграть 240 долларов и вероятность 75% проиграть 760 долларов. Это в точности соответствует варианту Д в Задаче 3. Точно так же добавление гарантированного проигрыша 750 долларов (вариант В) к варианту Б дает вероятность 25% выиграть 250 долларов и 75% – потерять 750 долларов. Это в точности соответствует варианту Е в Задаче 3. Таким образом, реакция на формулировку и S-образность функции ценности приводят к нарушению доминантности в наборе совпадающих решений.
Выводы из полученных результатов неутешительны: инвариантность
Другой подход, который мог бы гарантировать инвариантность, – оценка вариантов в терминах актуарных (статистических), а не психологических последствий. Критерий актуарности привлекателен в контексте человеческой жизни, но явно неадекватен для финансовых решений (так принято считать, по крайней мере после Бернулли) и совершенно непригоден для ситуаций, которые не поддаются объективному измерению. Мы делаем вывод, что инвариантность формата труднодостижима и уверенность в правильности выбора сейчас не гарантирует, что тот же выбор будет сделан при иной формулировке. Таким образом, полезно проверять устойчивость предпочтений, переформулировав проблему разными способами (Fischhoff, Slovic, and Lichtenstein 1980).
Психофизика шанса
До сих пор наше обсуждение шло в рамках правила ожидания Бернулли, согласно которому ценность (полезность) неопределенной перспективы образуется сложением полезностей возможных исходов, каждый из которых взвешен по его вероятности. Чтобы проверить это допущение, снова обратимся к психофизическим соображениям. Взяв ценность статус-кво за ноль, представим денежный подарок – скажем, 300 долларов – и определим его ценность. Теперь представьте, что получили в сего лишь билет лотереи, в которой разыгрывается единственный приз в 300 долларов. Меняется ли ценность билета как функция от вероятности получения приза? Не считая полезности игры, ценность подобной перспективы может меняться от нуля (когда шансы выигрыша нулевые) до единицы (когда выигрыш 300 долларов гарантирован).
Интуиция подсказывает, что ценность билета не является линейной функцией от вероятности выигрыша, как следует из правила ожидания. В частности, повышение вероятности от 0 до 5% явно даст больший эффект, чем повышение с 30 до 35%, которое, в свою очередь, значит меньше, чем повышение с 95 до 100%. Эти соображения наводят на мысль об эффекте «границы категорий»: переход от невозможного к возможному или от возможного к достоверному значительнее, чем переход той же величины в середине шкалы. Эта гипотеза отражена в кривой на рисунке 2, показывающей вес, приданный событию, как функцию его заявленной вероятности. Самая заметная особенность рисунка 2 в т ом, что веса решений регрессивны в отношении конкретных вероятностей. Не считая областей, близких к концам графика, увеличение вероятности выигрыша на 0,05 повышает ценность перспективы меньше чем на 5% от ценности выигрыша. Дальше мы исследуем, какое значение имеет эта психофизическая гипотеза для предпочтений при выборе в ситуации риска.
Офицер империи
2. Страж [Земляной]
Фантастика:
боевая фантастика
попаданцы
альтернативная история
рейтинг книги
Птичка в академии, или Магистры тоже плачут
1. Магистры тоже плачут
Фантастика:
юмористическое фэнтези
фэнтези
сказочная фантастика
рейтинг книги
Адептус Астартес: Омнибус. Том I
Warhammer 40000
Фантастика:
боевая фантастика
рейтинг книги
