Экспериментальная психология: конспект лекций
Шрифт:
Количественная обработка направлена в основном на формальное, внешнее изучение объекта, качественная – преимущественно на содержательное, внутреннее его изучение. В количественном исследовании доминирует аналитическая составляющая познания, что отражено и в названиях количественных методов обработки эмпирического материала: корреляционный анализ, факторный анализ и т. д. Реализуется количественная обработка с помощью математико-статистических методов.
В качественной обработке преобладают синтетические способы познания. Обобщение проводится на следующем этапе исследовательского процесса – интерпретационном. При качественной обработке данных главное заключается в соответствующем представлении сведений об изучаемом явлении, обеспечивающем дальнейшее его теоретическое изучение. Обычно результатом качественной
Противопоставление друг другу качественной и количественной обработки довольно условно. Количественный анализ без последующей качественной обработки бессмыслен, так как сам по себе не приводит к приращению знаний, а качественное изучение объекта без базовых количественных данных в научном познании невозможно. Без количественных данных научное познание – чисто умозрительная процедура.
Единство количественной и качественной обработки наглядно представлено во многих методах обработки данных: факторном и таксономическом анализе, шкалировании, классификации и др. Наиболее распространены такие приемы количественной обработки, как классификация, типологизация, систематизация, периодизация, казуистика.
Качественная обработка естественным образом выливается в описание и объяснение изучаемых явлений, что составляет уже следующий уровень их изучения, осуществляемый на стадии интерпретации результатов. Количественная же обработка полностью относится к этапу обработки данных.
7.2. Первичная статистическая обработка данных
Все методы количественной обработки принято подразделять на первичные и вторичные.
Первичная статистическая обработка нацелена на упорядочивание информации об объекте и предмете изучения. На этой стадии «сырые» сведения группируются по тем или иным критериям, заносятся в сводные таблицы. Первично обработанные данные, представленные в удобной форме, дают исследователю в первом приближении понятие о характере всей совокупности данных в целом: об их однородности – неоднородности, компактности – разбросанности, четкости – размытости и т. д. Эта информация хорошо считывается с наглядных форм представления данных и дает сведения об их распределении.
В ходе применения первичных методов статистической обработки получаются показатели, непосредственно связанные с производимыми в исследовании измерениями.
К основным методам первичной статистической обработки относятся: вычисление мер центральной тенденции и мер разброса (изменчивости) данных.
Первичный статистический анализ всей совокупности полученных в исследовании данных дает возможность охарактеризовать ее в предельно сжатом виде и ответить на два главных вопроса: 1) какое значение наиболее характерно для выборки; 2) велик ли разброс данных относительно этого характерного значения, т. е. какова «размытость» данных. Для решения первого вопроса вычисляются меры центральной тенденции, для решения второго – меры изменчивости (или разброса). Эти статистические показатели используются в отношении количественных данных, представленных в порядковой, интервальной или пропорциональной шкале.
Меры центральной тенденции – это величины, вокруг которых группируются остальные данные. Данные величины являются как бы обобщающими всю выборку показателями, что, во-первых, позволяет судить по ним обо всей выборке, а во-вторых, дает возможность сравнивать разные выборки, разные серии между собой. К мерам центральной тенденции в обработке результатов психологических исследований относятся: выборочное среднее, медиана, мода.
Выборочное среднее (М) – это результат деления суммы всех значений (X) на их количество (N).
Медиана (Me) – это значение, выше и ниже которого количество отличающихся значений одинаково, т. е. это центральное значение в последовательном ряду данных. Медиана не обязательно
Мода (Мо) – это значение, наиболее часто встречающееся в выборке, т. е. значение с наибольшей частотой. Если все значения в группе встречаются одинаково часто, то считается, что моды нет. Если два соседних значения имеют одинаковую частоту и больше частоты любого другого значения, мода есть среднее этих двух значений. Если то же самое относится к двум несмежным значениям, то существует две моды, а группа оценок является бимодальной.
Обычно выборочное среднее применяется при стремлении к наибольшей точности в определении центральной тенденции. Медиана вычисляется в том случае, когда в серии есть «нетипичные» данные, резко влияющие на среднее. Мода используется в ситуациях, когда не нужна высокая точность, но важна быстрота определения меры центральной тенденции.
Вычисление всех трех показателей производится также для оценки распределения данных. При нормальном распределении значения выборочного среднего, медианы и моды одинаковы или очень близки.
Меры разброса (изменчивости) – это статистические показатели, характеризующие различия между отдельными значениями выборки. Они позволяют судить о степени однородности полученного множества, его компактности, а косвенно и о надежности полученных данных и вытекающих из них результатов. Наиболее используемые в психологических исследованиях показатели: среднее отклонение, дисперсия, стандартное отклонение.
Размах (Р) – это интервал между максимальным и минимальным значениями признака. Определяется легко и быстро, но чувствителен к случайностям, особенно при малом числе данных.
Среднее отклонение (МД) – это среднеарифметическое разницы (по абсолютной величине) между каждым значением в выборке и ее средним.
где d = |Х – М |, М – среднее выборки, X – конкретное значение, N – число значений.
Множество всех конкретных отклонений от среднего характеризует изменчивость данных, но если не взять их по абсолютной величине, то их сумма будет равна нулю и мы не получим информации об их изменчивости. Среднее отклонение показывает степень скученности данных вокруг выборочного среднего. Кстати, иногда при определении этой характеристики выборки вместо среднего (М) берут иные меры центральной тенденции – моду или медиану.
Дисперсия (D) характеризует отклонения от средней величины в данной выборке. Вычисление дисперсии позляет избежать нулевой суммы конкретных разниц (d = Х – М) не через их абсолютные величины, а через их возведение в квадрат:
где d = |Х – М|, М – среднее выборки, X – конкретное значение, N – число значений.
Стандартное отклонение (б). Из-за возведения в квадрат отдельных отклонений d при вычислении дисперсии полученная величина оказывается далекой от первоначальных отклонений и потому не дает о них наглядного представления. Чтобы этого избежать и получить характеристику, сопоставимую со средним отклонением, проделывают обратную математическую операцию – из дисперсии извлекают квадратный корень. Его положительное значение и принимается за меру изменчивости, именуемую среднеквадратическим, или стандартным, отклонением:
Один на миллион. Трилогия
Один на миллион
Фантастика:
боевая фантастика
рейтинг книги
Record of Long yu Feng saga(DxD)
Фантастика:
фэнтези
рейтинг книги
Игра с огнем
2. Мой идеальный смерч
Любовные романы:
современные любовные романы
рейтинг книги
Бастард Императора
1. Бастард Императора
Фантастика:
фэнтези
аниме
рейтинг книги
Хозяин Теней
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
рейтинг книги
Вор (Журналист-2)
4. Бандитский Петербург
Детективы:
боевики
рейтинг книги
Прорвемся, опера! Книга 2
2. Опер
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Вторая жизнь майора. Цикл
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
рейтинг книги
Фею не драконить!
2. Феями не рождаются
Фантастика:
юмористическая фантастика
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
