Чтение онлайн

на главную - закладки

Жанры

Эксперт № 22 (2014)

Эксперт Эксперт Журнал

Шрифт:

figure class="banner-right"

figcaption class="cutline" Реклама /figcaption /figure

Явление сверхпроводимости было открыто еще в 1911 году голландским физиком Хейке Камерлинг-Оннесом, а сверхтекучести — нашим соотечественником Петром Капицей в 1938-м.

С тех пор советские и российские физики внесли весомый вклад в изучение этих явлений. Достаточно назвать такие имена, как Ландау, Боголюбов, Гинзбург, Абрикосов. Все они стали академиками, а Капица, Ландау, Гинзбург и Абрикосов были удостоены Нобелевской премии за работы именно в области сверхтекучести и сверхпроводимости.

Упрощенно говоря, сверхтекучесть —

это способность вещества, возникающая при понижении температуры до величин, близких к абсолютному нулю, протекать через узкие щели и капилляры без трения. Сверхтекучесть жидкого гелия возникает при температуре ниже 2,172 °К.

Сверхтекучесть и сверхпроводимость не случайно оказались связаны между собой в работах физиков: как писал Гинзбург, «явление сверхпроводимости уже давно было охарактеризовано как сверхтекучесть электронной жидкости в металлах».

Естественно, изучение сверхтекучести и сверхпроводимости не закончилось на этих блестящих именах. Во-первых, выяснилось, что эффекты сверхтекучести наблюдаются не только в лабораториях: состояние сверхтекучести и состояние Вселенной в первые микросекунды ее существования описываются общими закономерностями. Во-вторых, эти явления оказались значительно сложнее, чем описали классики. Одна из таких сложностей — упомянутая выше проблема турбулентности сверхтекучих жидкостей.

Мы встретились с Натальей Берловой, чтобы попытаться разобраться в сути сделанных открытий и узнать, как выпускница Московского университета стала первой женщиной — профессором математики за всю восьмисотлетнюю историю Кембриджского университета.

— Не могли ли бы вы разъяснить нам, в чем суть вашего открытия?

— Я бы не называла это открытием, но надеюсь, что это значимый шаг вперед. Мы создали новую математическую конструкцию, включающую в себя теорию сверхтекучести Ландау, за которую он получил Нобелевскую премию, и квантовые эффекты, такие как квантовые вихри, которые еще не были открыты, когда Ландау создавал свою теорию.

— А если подробнее…

— Известно, что, когда в 1938 году арестовали Ландау, Капица, который открыл к тому времени явление сверхтекучести, написал письмо Сталину с просьбой об освобождении опального физика, ссылаясь на необходимость объяснить удивительные свойства сверхтекучести и создать ее математическую модель. И именно Ландау создал двухкомпонентную модель сверхтекучего гелия, за что и получил Нобелевскую премию.

Дело в том, что сверхтекучий гелий может быть описан как смесь двух компонентов: сверхтекучего и нормального. Сверхтекучий компонент (He-II) — это идеальная жидкость, у которой нет никакой вязкости, которая не переносит тепла и не переносит энтропии, а нормальный компонент (He-I) — обычная вязкая жидкость. Ландау показал, что требования, налагаемые классическими законами сохранения и галилеевой инвариантностью, оказываются достаточными для описания двухкомпонентного, сверхтекучего гелия.

Но прошло несколько лет, и британец Джо Вайнен в 1961 году впервые экспериментально доказал присутствие во вращающемся сверхтекучем гелии квантованных вихрей сверхтекучей компоненты He-II, то есть феномена, подчиняющегося законам не классической, а квантовой механики. Вихри двигаются внутри жидкости: разделяются и снова сливаются, формируя связки и переплетения. Особенность этих вихрей в том, что сила циркуляции жидкости вокруг центра этого вихря может принимать только дискретные значения. Собственно,

поэтому такие жидкости получили название квантовых. А наука, которая занимается таким эффектами, называется квантовой гидродинамикой. Но Ландау этого всего не знал, и его теория исключала как сами вихри, так и их взаимодействие с нормальным и сверхтекучим компонентами. Было много попыток поправить теорию Ландау. Наиболее успешна в этом отношении теория HVBK, названная так по фамилиям предложивших ее британцев Хола и Вайнена и российских ученых Бахаревича и Халатникова, в которой удалось учесть структуру клубка квантовых вихрей. Но и она была не в состоянии описать движение и видоизменение самого клубка. И только нашей команде это удалось.

Причем оказалось, что хотя в сверхтекучем гелии у этих вихрей очень маленький размер — порядка ангстрема, то есть размер атома, однако при определенных условиях и в других системах, таких как ультрахолодные газы или поляритонные конденсаты, их размер может достигать десятков микрон: такие вихри становятся видимыми практически невооруженным глазом. Более того, удивительным образом вихри, несмотря на их наноразмеры, можно «видеть» и в сверхтекучем гелии.

Наталья Берлова

Фото: Олег Слепян

— И каким образом?

— В сверхтекучем гелии увидеть вихри помогают электроны. Профессор Университета Брауна (США) Хамфри Марис на протяжении нескольких лет провел очень красивые эксперименты, в которых он использовал электроны, поток которых направлялся на жидкий гелий, как крошечные испытательные зонды, позволяющие увидеть динамику процесса, происходящего при сверхнизких температурах в квантовых жидкостях.

Когда электроны перемещаются в жидком гелии, находящемся при сверхнизких температурах, вокруг них формируются пузырьки. Это связано с тем, что электрон, благодаря тому, что он, как и любая элементарная частица, обладает волновой природой, отталкивает атомы гелия. Это пузырьки довольно большого диаметра, примерно два нанометра, которые попадают в ловушку квантовых вихрей точно так же, как дома и машины попадают в центр торнадо.

Математическая модель, предложенная нами, позволила обнаружить совершенно новый механизм размножения вихрей. Во время осцилляций давления ядро вихря расширяется, а затем сжимается. Во время сжатия формируется плотный массив новых вихревых колец. Мы пришли к следующему выводу: весьма вероятно, что электронный пузырек захватывается более чем одной вихревой линией, что еще больше снижает перепад давления, необходимый для взрыва пузырька. И оказалось, что механизм размножения вихрей подавляется при повышении температуры. Это объясняет, почему такие объекты были экспериментально обнаружены только при низких температурах.

— Ваша теория и теория классической турбулентности как-то связаны?

— Классическая турбуленция — одна из самых больших гидродинамических задач. Теории турбулентности как не было, так и нет. С этой точки зрения теория сверхтекучей турбулентности может стать моделью для классической. Потому что она в чем-то более проста для изучения, потому что у нас нет такого разнообразия вихрей в силу их квантового характера. Поэтому мы можем сначала понять, что происходит в сверхтекучей турбулентности, а потом перенести это понимание на классическую.

Поделиться:
Популярные книги

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Тот самый сантехник. Трилогия

Мазур Степан Александрович
Тот самый сантехник
Приключения:
прочие приключения
5.00
рейтинг книги
Тот самый сантехник. Трилогия

Шайтан Иван

Тен Эдуард
1. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Гоплит Системы

Poul ezh
5. Пехотинец Системы
Фантастика:
фэнтези
рпг
фантастика: прочее
5.00
рейтинг книги
Гоплит Системы

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

На границе империй. Том 2

INDIGO
2. Фортуна дама переменчивая
Фантастика:
космическая фантастика
7.35
рейтинг книги
На границе империй. Том 2

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Законы Рода. Том 3

Flow Ascold
3. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 3