Чтение онлайн

на главную

Жанры

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Шрифт:

Рис. 6.4.Персиковая косточка закреплена в тисках. Для создания её изображения используются только наблюдения за тем, как отскакивают предметы — «зонды», — брошенные в неё. Используя зонды всё меньшего размера — шарики ( а), пятимиллиметровые пульки ( б), полумиллиметровые пульки ( в), можно получать всё более детальное изображение

Лучшее, что удалось изобразить Слиму, показано на рис. 6.4 а. Наблюдая за траекторией отскакивающих шариков, он смог установить, что размер косточки мал, и что она имеет твёрдую поверхность. Но это всё, что ему удалось узнать. Шарики были слишком велики, чтобы на них оказывали влияние более мелкие детали строения персиковой косточки. Когда Слим бросил взгляд на рисунок Джима (рис. 6.4 б), он был поражён тем, что увидел. Однако быстрый взгляд на стрелялку Джима позволил ему понять, в чём дело: небольшие пульки, используемые Джимом, были достаточно малы, чтобы на угол, под которым они отражались, оказывали влияние некоторые крупные детали строения косточки. Таким образом, выстрелив в косточку большим количеством пятимиллиметровых пулек и наблюдая за их

траекториями после отскока, Джим смог нарисовать более подробный рисунок. Чтобы не проиграть, Слим взял свою стрелялку, заполнил её снарядами ещё меньшего размера — полумиллиметровыми пульками, — которые так малы, что на характер их отражения будут оказывать влияние мельчайшие морщинки на поверхности косточки. Наблюдая за отскоком этих пулек, он смог нарисовать рисунок, который принёс ему победу (рис. 6.4 в).

Урок, который можно извлечь из этого маленького состязания, ясен: размер частиц-зондов не может существенно превышать размер изучаемых физических особенностей; в противном случае разрешающая способность исследования окажется недостаточной для изучения интересующих нас структур.

Те же самые выводы относятся, конечно, и к случаю, когда мы захотим провести более глубокое исследование персиковой косточки, чтобы определить её структуру на атомном и субатомном уровне. Полумиллиметровые пульки не дадут никакой полезной информации по этому вопросу; они явно слишком велики, чтобы исследовать структуру на атомном уровне. Именно по этой причине в ускорителях в качестве зондов используются протоны или электроны: маленький размер этих частиц делает их гораздо более подходящими для этой цели. На субатомном уровне, где на смену классической логике приходят квантовые понятия, наиболее подходящей мерой разрешающей способности частиц является квантовая длина волны, которая определяет диапазон неопределённости местонахождения частиц. Этот факт является следствием приведённого в главе 4 обсуждения соотношения неопределённостей Гейзенберга. Там мы установили, что минимальная погрешность при использовании в качестве зонда точечных частиц (мы говорили о фотонных зондах, но сказанное применимо и ко всем другим частицам) примерно равна квантовой длине волны частицы, используемой в качестве зонда. Грубо говоря, разрешающая способность точечной частицы размазывается в результате действия квантовых флуктуаций подобно тому, как точность скальпеля хирурга уменьшается, когда его руки дрожат. Вспомним, однако, что в главе 4 мы также отметили один важный факт, состоящий в том, что квантовая длина волны частицы обратно пропорциональна моменту количества движения, который, грубо говоря, определяется её энергией. Таким образом, увеличивая энергию точечной частицы, можно делать её квантовую длину волны всё меньше и меньше, квантовое размазывание будет всё более уменьшаться и, следовательно, мы сможем использовать эту частицу для изучения всё более тонких структур. Интуитивно понятно, что частицы высокой энергии имеют большую проникающую способность и могут использоваться для изучения более мелких деталей строения.

В этом смысле становится очевидным различие между точечными частицами и нитями струн. Как в примере с пластиковыми пульками для изучения структуры поверхности персиковой косточки, присущая струне пространственная протяжённость не позволяет использовать её для исследования объектов, размер которых существенно меньше размера струны, в нашем случае — объектов, характерные размеры которых меньше планковской длины. Если перейти к более точным формулировкам, в 1988 г. Дэвид Гросс, работавший в то время в Принстонском университете, и его студент Пол Менде показали, что если учитывать квантовую механику, то непрерывное увеличение энергии струны не приводитк непрерывному увеличению её способности исследовать всё более тонкие структуры, в отличие от того, что имело бы место для точечной частицы. Они установили, что при увеличении энергии струны сначала её разрешающая способность растёт так же, как у точечной частицы высокой энергии. Однако, когда энергия струны превышает значение, необходимое для изучения структур в масштабе планковской длины, дополнительная энергия перестаёт вызывать увеличение разрешающей способности. Вместо этого дополнительная энергия приводит к увеличению размераструны, тем самым уменьшаяеё разрешающую способность. Типичный размер струны близок к планковской длине, но если накачать струну достаточной энергией, которую мы не можем даже представить, но которая могла существовать во время Большого взрыва, то можно было бы заставить струну вырасти до макроскопическихразмеров. Это был бы довольно топорный инструмент для изучения микромира! Всё выглядит так, как будто струна, в отличие от точечной частицы, имеет дваисточника размазывания: квантовые флуктуации, как для точечной частицы, а также собственные пространственные размеры. Увеличение энергии струны уменьшает размазывание, связанное с первым источником, но, в конечном счёте, увеличивает размазывание, обусловленное вторым. В результате, как бы вы ни старались, физические размеры струны не позволят вам использовать её на субпланковском масштабе расстояний.

Но ведь конфликт между общей теорией относительности и квантовой механикой возникает благодаря свойствам структуры пространства, проявляющимся в субпланковском масштабе расстояний. Если элементарные компоненты Вселенной непригодны для исследований на субпланковских масштабах расстояний, это значит, что ни они, ни какие-либо объекты, состоящие из таких компонентов, не могут испытывать влияния этих кажущихся гибельных квантовых флуктуаций на малых масштабах.Это похоже на то, что произойдёт, если мы проведём рукой по полированной гранитной поверхности. Хотя на микроскопическом уровне гранит является дискретным, зернистым и неровным, наши пальцы не смогут обнаружить эти микроскопические неровности, и поверхность покажется нам абсолютно гладкой. Наши толстые, длинные пальцы «смажут» микроскопическую дискретность. Подобно этому, поскольку струна имеет конечные пространственные размеры, существует нижний предел её разрешающей способности. Струна не способна обнаружить изменения на субпланковском масштабе расстояний. Подобно нашим пальцам на граните, струна смажет ультрамикроскопические флуктуации гравитационного поля. И хотя результирующие флуктуации по-прежнему остаются значительными, это смазывание сгладит их в степени, достаточной для преодоления несовместимости общей теории относительности и квантовой механики. В частности, теория струн ликвидирует обсуждавшиеся в предыдущей главе фатальные бесконечности, возникающие при попытке построить квантовую теорию гравитации на основе модели точечных частиц.

Существенное различие между аналогией с гранитом и нашей реальной проблемой структуры пространства состоит в том, что существуют способы обнаружить микроскопическую дискретность поверхности гранита. Для этого могут использоваться более точные зонды, чем наши пальцы. Электронный микроскоп способен обнаружить поверхностные структуры, размер которых составляет менее одной миллионной доли сантиметра; этого достаточно, чтобы увидеть многочисленные неровности на поверхности. В противоположность этому, в теории струн нет способа обнаружить «неровности» в структуре пространства

на субпланковском уровне. Во Вселенной, управляемой законами теории струн, уже не является истинной обычная точка зрения, согласно которой мы можем без ограничения делить объекты на всё более и более мелкие части. Предел существует, он вступает в игру, когда мы сталкиваемся с разрушительной квантовой пеной, показанной на рис. 5.1. Следовательно, в определённом смысле, который станет яснее в последующих главах, можно утверждать, что бурные квантовые флуктуации на субпланковских расстояниях не существуют. Как выразился бы позитивист, объект или явление существует, только если мы можем — хотя бы в принципе — исследовать и измерить его. Поскольку предполагается, что струны являются наиболее фундаментальным объектом мироздания и имеют слишком большой размер, чтобы на них оказывали влияние флуктуации структуры пространства, происходящие на субпланковских расстояниях, эти флуктуации не могут быть измерены, и, следовательно, согласно теории струн они не существуют.

Ловкость рук?

Обсуждение, приведённое выше, может оставить у вас чувство неудовлетворённости. Вместо того чтобы показать, что теория струн укрощает субпланковские флуктуации структуры пространства, мы, похоже, использовали ненулевой размер струн для того, чтобы обойти всю проблему стороной. Решили ли мы вообще хоть что-нибудь? Решили. Следующие два соображения позволят нам лучше понять это.

Прежде всего вывод, который можно сделать из предыдущего обсуждения, состоит в том, что предполагаемые флуктуации структуры пространства в масштабе субпланковских расстояний связаны исключительно с формулировкой общей теории относительности и квантовой механики в рамках модели, основанной на точечных частицах. Это означает, что центральное противоречие современной теоретической физики в определённом смысле является проблемой, которую породили мы сами. Поскольку мы ранее предположили, что все частицы вещества и все частицы, передающие взаимодействие, должны быть точечными объектами, практически не имеющими пространственной протяжённости, мы были обязаны рассматривать свойства Вселенной на произвольно малых масштабах. И на самых малых расстояниях мы столкнулись с проблемой, выглядящей неразрешимой. Теория струн утверждает, что мы столкнулись с этой проблемой только потому, что не поняли истинных правил игры: новые правила гласят, что существует предел тому, насколько глубоко можно исследовать Вселенную, — предел, определяющий, до какого уровня наше обычное понятие расстояния может применяться к ультрамикроскопической структуре мироздания. Становится понятно, что фатальные флуктуации структуры пространства возникают в наших теориях из-за неосведомлённости об этих пределах: модель с точечными частицами далеко выходит за рамки физической реальности.

Видя кажущуюся простоту этого решения, позволяющего разрешить конфликт, возникающий между общей теорией относительности и квантовой механикой, вы можете удивиться, почему прошло столько времени, пока учёные не осознали, что точечная модель частиц всего лишь идеализация, и что в реальном мире элементарные частицы имеют некоторые конечные размеры. Это второй момент, на который мы хотели бы обратить внимание. Уже давно некоторые из величайших умов теоретической физики, такие как Паули, Гейзенберг, Дирак и Фейнман, предполагали, что компоненты природы в действительности могут быть не точками, а маленькими, колеблющимися «капельками» или «ядрышками». Однако они, как и другие учёные, столкнулись с тем, что очень трудно построить теорию, фундаментальные компоненты которой не являются точечными частицами, и которая, в то же время, совместима с основополагающими физическими принципами, такими, как сохранение квантово-механической вероятности (согласно которому физические объекты не могут внезапно исчезать из Вселенной без всякого следа) и невозможность передачи информации со скоростью, превышающей скорость света. Снова и снова их исследования с разных точек зрения показывали, что отказ от парадигмы точечных частиц приводит к несоблюдению одного из этих принципов или их обоих. Поэтому в течение долгого времени казалось невозможным построить разумную квантовую теорию, основанную на чём либо ином, кроме точечных частиц. За двадцать с лишним лет глубоких исследований выяснилась поистине впечатляющая особенность теории струн: при всей непривычности некоторых понятий теория струн обладает всеми свойствами, которые должна иметь каждая разумная физическая теория. И, более того, благодаря наличию мод колебаний, реализующих гравитон, теория струн представляет собой квантовую теорию, включающую гравитацию.

Более точный ответ

Грубый ответ ухватывает сущность того, почему теория струн смогла добиться успеха там, где предшествующие теории, основанные на точечной модели частиц, потерпели неудачу. Поэтому без ущерба для понимания дальнейшего можно сразу перейти к следующему разделу. Однако, рассмотрев в главе 2 основные идеи специальной теории относительности, мы получили в своё распоряжение средства, позволяющие более точно описать, как теория струн борется с разрушительными квантовыми флуктуациями.

В более точном ответе мы будем использовать те же основные идеи, которые содержались в приближённом ответе, но выразим их непосредственно на языке струн. Мы увидим, как конечность размера струн «размазывает» информацию, которую можно было бы получить при зондировании с использованием точечных частиц, и тем самым, к нашему счастью, снимает проблему поведения пространства на ультрамикроскопических расстояниях, ответственную за центральную дилемму современной физики.

Сначала рассмотрим, как происходило бы взаимодействие между точечными частицами, если бы они действительно существовали, и, соответственно, как можно было бы использовать их в качестве физических зондов. Наиболее важным является показанный на рис. 6.5 случай взаимодействия между частицами, движущимися по пересекающимся путям, приводящим к столкновению. Если бы эти частицы были бильярдными шарами, они могли бы столкнуться, после чего каждая из них начала бы двигаться по новой траектории. Квантовая теория поля с точечными частицами показывает, что то же самое происходит при столкновении элементарных частиц — они отскакивают друг от друга и продолжают свой путь по новым траекториям, — однако детали этого процесса отличаются.

Рис. 6.5.Две частицы взаимодействуют: они «сталкиваются между собой», и это приводит к изменению траектории каждой из них

Для большей определённости и простоты представим себе, что одна из двух частиц является электроном, а другая — её античастицей, позитроном. При столкновении частицы и античастицы они аннигилируют с выделением энергии в чистом виде, приводящим к образованию, например, фотона. {48} Чтобы отличать выходящую траекторию фотона от входящих траекторий электрона и позитрона, мы будем, следуя принятому в физике соглашению, изображать её волнистой линией. Обычно фотон проходит небольшое расстояние, после чего высвобождает энергию, полученную от первоначальной электрон-позитронной пары, путём образования другой электрон-позитронной пары, показанной в правой части рис. 6.6. Эти две частицы испытывают электромагнитное взаимодействие и, в конце концов, разлетаются по расходящимся траекториям. Такая последовательность событий имеет определённое сходство с описанием бильярдных шаров.

Поделиться:
Популярные книги

Последняя Арена 9

Греков Сергей
9. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 9

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс

Единственная для невольника

Новикова Татьяна О.
Любовные романы:
любовно-фантастические романы
5.67
рейтинг книги
Единственная для невольника

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Комендант некромантской общаги 2

Леденцовская Анна
2. Мир
Фантастика:
юмористическая фантастика
7.77
рейтинг книги
Комендант некромантской общаги 2

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Барону наплевать на правила

Ренгач Евгений
7. Закон сильного
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Барону наплевать на правила

Завод 2: назад в СССР

Гуров Валерий Александрович
2. Завод
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Завод 2: назад в СССР

Вечный. Книга III

Рокотов Алексей
3. Вечный
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга III

Советник 2

Шмаков Алексей Семенович
7. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Советник 2