Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории
Шрифт:
Ещё до полудня следующего дня стало ясно, что реакция на статью весьма активная. Среди многих ответов по электронной почте было и письмо Плессера. В нём содержалась наивысшая похвала, которой один физик может удостоить другого: «Как жаль, что эта мысль пришла в голову не мне!». Несмотря на наши опасения предыдущей ночи, нам удалось убедить сообщество физиков в том, что структура пространства может подвергаться не только открытым ранее умеренным разрывам (см. главу 11), но и гораздо более сильным, изображённым на рис. 13.3.
Снова о чёрных дырах и элементарных частицах
Есть ли у всего этого какая-нибудь связь с чёрными дырами и элементарными частицами? Таких связей множество. Чтобы это понять, нужно задаться тем же вопросом, что и в главе 11. К каким наблюдаемым следствиям приведут такие разрывы структуры пространства? Для флоп-перестроек, обсуждавшихся выше, неожиданно оказывается, что нет практически никаких наблюдаемых последствий. В случае конифолдных переходов— такое название мы дали недавно переходам с сильным разрывом пространства, —
Наблюдаемые последствия основаны на двух связанных идеях. Рассмотрим их по очереди. Во-первых, как обсуждалось выше, суть исходной работы Строминджера состояла в открытии того, что трёхмерная сфера внутри пространства Калаби–Яу может коллапсировать без возникновения катастрофы, так как обёртывающая её 3-брана служит надёжным защитным экраном. Но как выглядит эта конструкция с обёрнутой вокруг сферы 3-браной? Ответ даёт более ранняя работа Хоровица и Строминджера, в которой показано, что для существ типа нас с вами, органам чувств которых прямо доступны лишь три развёрнутых пространственных измерения, «оборачивающиеся» вокруг трёхмерной сферы 3-браны предстанут в виде гравитационного поля сродни полю чёрной дыры. {114} Этот факт неочевиден, и становится ясен только после тщательного изучения описывающих браны уравнений. Здесь, как и выше, сложно изобразить многомерную конфигурацию на двумерном рисунке, но примерное представление по аналогии с двумерными сферами можно получить из рис. 13.4. Видно, что двумерная мембрана может обернуться вокруг двумерной сферы (которая сама покоится внутри пространства Калаби–Яу, находящегося в некоторой точке пространства развёрнутых измерений). Некто, наблюдающий эту точку сквозь развёрнутые измерения, почувствует брану по её массе и заряду, и, как показали Хоровиц и Строминджер, судя по этим характеристикам, сможет сделать вывод, что перед ним чёрная дыра. Кроме того, в основополагающей работе 1995 г. Строминджер показал, что масса 3-браны, т. е. масса чёрной дыры, пропорциональна объёму трёхмерной сферы, которую она обёртывает. Чем больше объём сферы, тем больше должна быть обёртывающая её 3-брана, и тем больше её масса. Аналогично, чем меньше объём сферы, тем меньше масса обёртывающей её 3-браны. По мере сжатия сферы обёртывающая её 3-брана, которая выглядит, как чёрная дыра, становится легче. В момент, когда трёхмерная сфера стягивается в точку, соответствующая чёрная дыра (соберитесь с духом!) становится безмассовой. На первый взгляд, это совершенно непостижимо (что это ещё за безмассоваячёрная дыра?), но чуть ниже мы свяжем этот загадочный феномен со знакомой физикой струн.
Рис. 13.4.Когда брана обёртывает сферу, покоящуюся в свёрнутых измерениях, она выглядит как чёрная дыра в обычных пространственных измерениях
Во-вторых, напомним, что, как обсуждалось в главе 9, число отверстий многообразия Калаби–Яу определяет число низкоэнергетических (а, следовательно, имеющих малую массу) колебательных мод струны, которыми могут описываться перечисленные в табл. 1.1 частицы, а также типы взаимодействий. Но так как при конифолдных переходах с разрывом пространства число отверстий меняется (например, как на рис. 13.3, где отверстие тора исчезло в процессе разрыва/восстановления), можно ожидать и изменения числа колебательных мод малой массы. Действительно, после того, как Моррисон, Строминджер и я тщательно изучили этот вопрос, мы обнаружили, что при замещении сжимающейся трёхмерной сферы в свёрнутых измерениях Калаби–Яу двумерной сферой число безмассовых колебательных мод струны возрастает ровно на единицу. (Пример, приведённый на рис. 13.3, где баранка превращается в мяч, может создать ложную иллюзию, что число отверстий, а, следовательно, и число мод, уменьшается. На самом деле, это артефакт маломерной аналогии.)
Чтобы связать идеи, описанные в двух предыдущих параграфах, представим себе последовательность снимков пространства Калаби–Яу при постепенном уменьшении размеров некоторой сидящей внутри трёхмерной сферы. Из первой идеи следует, что масса 3-браны, обёртывающей трёхмерную сферу и кажущейся нам чёрной дырой, будет уменьшаться и станет равной нулю в момент коллапса. Теперь, пользуясь второй идеей, мы можем ответить на поставленный выше вопрос о том, что означает обращение массы в ноль. Согласно нашей работе, новая безмассовая колебательная мода струны, возникающая при конифолдном переходе с разрывом пространства, на микроскопических масштабах описывает безмассовую частицу, в которую превращается чёрная дыра. Вывод такой: при эволюции многообразия Калаби–Яу, сопровождающейся конифолдным переходом с разрывом пространства, изначально ненулевая масса чёрной дыры уменьшается до нуля, после чего чёрная дыра превращается в безмассовую частицу (подобную фотону), которая на языке теории струн описывается определённой колебательной модой струны. Таким образом, в теории струн впервые удаётся установить прямую, точную и количественно неопровержимую связь между чёрными дырами и элементарными частицами.
«Таяние» чёрных дыр
Найденная связь между чёрными дырами и элементарными частицами по своей природе близка классу явлений, которые мы наблюдаем в повседневной жизни, и которые в физике называют фазовыми переходами. Простой пример фазового перехода упоминался в предыдущей главе: вода может
Для кардинальных переходов с разрывом пространства и для переходов от одной из пяти формулировок теории струн к другой (см. главу 12) умышленно использовалась одна и та же аналогия с водой, так как эти переходы тесно связаны. Вспомним (см. рис. 12.11), что пять теорий струн дуальны друг другу и, следовательно, объединены под эгидой охватывающей их единой теории. Но сохранится ли возможность непрерывного перехода от одного описания к другому, т. е. возможность попасть в любую точку карты рис. 12.11 из любой другой, и после того, как мы будем свёртывать лишние измерения в разные многообразия Калаби–Яу? До открытия переходов с кардинальным изменением топологии ожидаемый ответ был отрицательным, так как до этого открытия не было известно, как деформировать одно многообразие Калаби–Яу в другое. Однако сейчас мы видим, что ответ положительный. Путём физически допустимых конифолдных переходов с разрывом пространства можно непрерывно преобразовать любое заданное многообразие Калаби–Яу в любое другое. Все струнные модели, полученные изменениями константы связи и геометрии пространства Калаби–Яу, будут разными фазами единой теории. Целостность схемы рис. 12.11 сохранится даже после сворачивания всех дополнительных измерений.
Энтропия чёрной дыры
Многие годы самые лучшие специалисты в области теоретической физики рассуждали о возможности процессов с разрывом пространства и о связи между чёрными дырами и элементарными частицами. Хотя ранее такие рассуждения могли казаться научной фантастикой, открытие теории струн, в результате которого стало возможным объединение общей теории относительности и квантовой теории, позволило уверенно выдвинуть эти вопросы на передний край современной науки. Успехи теории струн вдохновляют на исследование вопроса о том, не могут ли и другие таинственные свойства Вселенной, десятилетиями не поддававшиеся решению, уступить натиску всемогущей теории струн? Важнейшим из этих свойств является энтропия чёрной дыры. Именно в области изучения энтропии чёрной дыры теория струн наиболее выразительно продемонстрировала свою гибкость и дала возможность разрешить важнейшую проблему, поставленную ещё четверть века назад.
Энтропия — это мера беспорядка или хаотичности. Например, если рабочее место завалено открытыми книгами, недочитанными статьями, старыми газетами и ещё не попавшими в мусорное ведро рекламными проспектами, то степень его беспорядка велика, и оно имеет высокую энтропию. И наоборот, если статьи рассортированы по темам в разные папки, газеты аккуратно разложены по номерам, книги расставлены по алфавиту, а все ручки и карандаши стоят в своих подставках, то рабочее место находится в хорошем порядке, и имеет низкую энтропию. Этот пример иллюстрирует суть понятия энтропии, однако учёные дали ей строгое количественное определение, позволяющее описывать энтропию тел с помощью численных значений. Чем больше численное значение, тем больше энтропия, и наоборот. Хотя подробности вычислений не очень просты, это число, грубо говоря, равно числу всевозможных перегруппировок элементов данной физической системы, при которых её общий вид не изменяется. Если рабочее место прибрано, то почти всякая перестановка — изменение порядка газет, книг, статей, или перемещение ручки из держателя на стол — приведёт к нарушению порядка. С другой стороны, если на рабочем месте беспорядок, то при множестве вариантов перекладываний газет, статей и т. д. беспорядок так и останется беспорядком, и общий вид рабочего места не изменится. Поэтому в последнем случае энтропия велика.
Конечно, примеру перегруппировки предметов на рабочем месте с его нечётким определением того, какие именно перегруппировки «не изменяют общий вид», не достаёт научной точности. На самом деле, в строгом определении энтропии рассматриваются микроскопические квантово-механические параметры, описывающие элементарные физические составные части системы, и для этих параметров вычисляется число возможных перегруппировок, при которых итоговые макроскопические параметры (например, энергия или температура) не изменяются. Детали несущественны, если понятен факт, что квантово-механическая энтропия является строгим понятием, позволяющим точно измерять общий беспорядок в физических системах.