Энергетика сегодня и завтра
Шрифт:
Сейчас, по истечении более трех десятков лет, атомная энергетика технически повзрослела, стала надежнее, а общая ее мощность в нашей стране достигла почти 30 миллионов киловатт. Предусматривается убыстрение темпов ее дальнейшего развития. Уже к 1990 году энерговыработка атомных электростанций должна вырасти до 390 миллиардов киловатт-часов. К 2000 году атомные электростанции должны вырабатывать энергии в 5-7 раз больше. Согласно Энергетической программе "ускоренное развитие в европейской части страны ядерной энергетики позволит на рубеже XX и XXI веков в основном остановить рост трансконтинентальных
Удастся ли достичь таких темпов, то есть вводить уже в двенадцатой пятилетке каждые два месяца в строй атомный блок мощностью миллион киловатт? А через десять лет темпы ускорятся - будет вводиться один такой блок ежемесячно. Без прочной развитой машиностроительной и электротехнической базы этого не сделаешь.
И программа предусматривает необходимые меры.
К сожалению, атомные станции строятся еще очень долго. Так, в США возведение некоторых станций продолжалось 12 лет. В Японии же одна из АЭС была создана за рекордно короткий срок - всего за четыре года.
Наши АЭС сооружались по-разному - есть и хорошие, и плохие примеры.
Длительные сроки строительства - это не только замороженные ресурсы, нужные народному хозяйству. Согласно расчетам приросту выработки электроэнергии в один киловатт-час соответствует прирост национального дохода в 40 копеек. Поэтому иногда говорят, что запоздание с вводом блока мощностью 1 миллион киловатт на один год может привести к недополучению 2 миллиардов рублей национального дохода. Конечно, такая оценка не совсем корректна, однако очевидны громадные потери в народном хозяйстве, связанные с недовыработкой электроэнергии. Развитие поточных методов строительства позволяет резко сократить сроки ввода блоков. Так, второй и третий блоки Запорожской АЭС вошли в строй всего за четыре года.
В настоящее время вырабатывают электроэнергию множество реакторов, существенно различных по конструкции. А лет двадцать назад для использования в энергетике предполагалось еще больше типов ядерных реакторов, и должны были пройти долгие годы, прежде чем исследователи, эксплуатационники смогли досконально изучить их и выбрать наилучшие.
У многих людей, судя по разговорам, отношение к атомным энергетическим установкам довольно настороженное. Поэтому имеет смысл рассказать, как работают АЭС, в чем их достоинства и недостатки.
Атомная электростанция в основном состоит из тех же элементов, что и обычная тепловая. Главное отличие - в генераторе энергии. На атомной станции вместо котла установлен ядерный реактор, вырабатывающий тепловую энергию, однако его принцип действия и источник энергии в нем другие.
В обычном котле используется химическая энергия органического топлива, то есть энергия связи атомов углерода и кислорода, выделяющаяся при окислении - горении того же угля.
В ядерном же котле-реакторе выделяется энергия связи нейтронов и протонов, освобождающаяся при делении ядра урана на части под воздействием нейтронов.
При делении ядер выделяется гораздо больше энергии, чем при соединении атомов: 20 миллионов килокалорий на один грамм разделившегося топлива. Сгорание же одного грамма угля высвобождает только 7 килокалорий - в три миллиона раз меньше. Чтобы получить миллион киловатт
Итак, АЭС расходует гораздо меньше топлива, чем ТЭС. Ее можно разместить в любой точке страны, потому что доставка ядерного горючего не представляет транспортных сложностей. Особый характер протекания ядерной цепной реакции требует и другого принципа управления ядерным реактором.
Сравнительно просто управлять двигателем автомобиля или форсунками, питающими топки котлов. Шофер увеличивает или уменьшает мощность двигателя с помощью педали газа. Чтобы автомобиль ехал быстрее, шофер нажимает на нее. Но увеличение мощности двигателя не будет беспредельным - в конце концов она достигнет максимума. Если шофер вернет педаль газа в прежнее положение, то к прежней величине вернутся и мощность двигателя, и скорость автомобиля.
В ядерном реакторе все происходит совсем не так.
Если вывести из реактора стержень управления (аналог педали газа), то цепная ядерная реакция ускорится и мощность начнет расти практически беспредельно. Чтобы остановить рост мощности, нужно вернуть стержень управления в прежнее положение. Но при этом мощность реактора не вернется к прежней, а останется новой. Хотя принципиальная возможность беспредельного роста мощности существует. Практически в имеющихся типах реакторов безудержное деление ядер блокируется. Существуют механизмы так называемой "обратной связи", благодаря которым при возрастании мощности ухудшаются условия протекания ядерной цепной реакции и мощность падает. "Реактор останавливается", - говорят физики.
Требования к системам управления и аварийной защиты ядерных реакторов значительно выше, чем к соответствующим системам котлов на органическом топливе.
Остановимся еще на двух особенностях ядерных реакторов, от которых зависит развитие атомной энергетики.
Атомный реактор невозможно "выключить" совсем и прекратить выделение в нем энергии. Если прервать цепную реакцию, то мощность ядерного котла падает до 6 процентов от той мощности, на которой он работал до остановки. Через час она будет составлять всего 2 процента, а позже еще меньше. Источник выделяющейся энергии - не деление ядер, а радиоактивное излучение осколков деления.
Это очень неприятная особенность. Чтобы после остановки не произошел перегрев конструкций реактора и их разрушение, нужно обеспечить "абсолютно" надежный отвод этого остановочного тепловыделения. Такие надежные системы теплоотвода обходятся достаточно дорого.
Соответственно капиталовложения на сооружение АЭС в полтора-два раза выше, чем на строительство тепловой электростанции эквивалентной мощности.
Создают ряд проблем и радиоактивные излучения, испускаемые ядерным топливом во время работы реактора и после его остановки.