Энергия будущего
Шрифт:
Конечно, чтобы зажечь дерево, не нужно переводить его в четвертое состояние. Уже при температуре около 400 градусов его молекулы (точнее, молекулы целлюлозы) и молекулы кислорода движутся настолько интенсивно, что при соударении соединяются друг с другом, "сцепляются" своими электронными оболочками и образуют новое вещество. Выделяющейся при этой реакции энергии с избытком хватает на то, чтобы прошла такая же реакция соединения соседних молекул. От них энергия передается к следующим и так далее. Так возникает цепная реакция горения.
Мы обратились к химическим реакциям, чтобы на их примере показать, как можно осуществить реакцию
Не нужно забывать, что химические и ядерные реакции (в данном случае реакция синтеза) качественно различны. В первой из них соединение атомов или молекул приводит к образованию нового вещества, но не нового элемента. Для осуществления химической реакции достаточно придать атомам или молекулам относительно небольшие скорости движения. В реакции синтеза совершенно другая ситуация. Чтобы соединить ядра, их нужно разогнать до гораздо больших скоростей движения.
Ведь ядра атомов несут положительный электрический заряд, а всякие одноименно заряженные частицы отталкиваются, и чем меньше расстояние между ними, тем больше силы отталкивания. Для преодоления этих сил отталкивания и нужно придать ядрам колоссальные скорости порядка 500-800 километров в секунду! Такую большую скорость ядра дейтерия приобретут только при температуре 100-150 миллионов градусов.
Таков первый путь освобождения энергии ядра. Второй путь - деление ядер. А есть ли еще какие-либо способы высвобождения энергии ядра? Пока, к сожалению, нет, или, точнее, мы их пока не знаем.
Аннигиляция
В реакциях деления и синтеза ядер в тепло и излучение превращается от 0,1 до 0,5 процента вещества. При химических реакциях, как мы уже говорили, эта величина составляет всего лишь одну десятимиллионную (10^-7) часть. Значит, овладев энергией деления и синтеза, человечество увеличит калорийность (теплотворную способность) топлива в миллионы раз. Это очень важный и своевременно взятый рубеж. Но, овладев им, человек начинает думать о взятии нового. Это и не удивительно.
"Человек создан затем, чтобы идти вперед и выше", - говорил Максим Горький, поэтизируя это качество людей.
Если же думать о практическом значении такого "опережения событий", то, пожалуй, не скажешь лучше известного польского писателя-фантаста С. Лема: "...в предыстории практика, естественно, опережала теорию, ныне же теория обязана провидеть пути практики, ибо за всякое невежество, проявленное сейчас, человечеству придется дорого уплатить потом".
Итак, стоит вопрос, который задают и ученые-теоретики, и экспериментаторы, занимающиеся физикой ядрасуществуют ли пути превращения в энергию большего количества вещества, чем реакции деления и синтеза ядер. Возможны ли они в принципе?
В принципе такие пути возможны. Нужно только найти законы, управляющие процессами большего превращения вещества в энергию.
Один из таких возможных процессов называется аннигиляцией. Это слово образовано от латинского "nihil" - ничто. Буквальный перевод: превращение в ничто, уничтожение. Физики называют аннигиляцией превращение элементарных частиц (протонов, нейтронов, электронов),
Аннигиляция происходит при столкновении какойлибо элементарной частицы, например, протона, с ее античастицей - антипротоном. Обладая т0й же массой, что и протон, она имеет не положительный, а отрицательный заряд и отличается рядом других свойств.
Эта ядерная реакция найдена не только на бумаге, но и осуществлена 1зо многих экспериментальных установках. Если аннигиляция протона и антипротона происходит в вакууме - образуются гамма-кванты, несущие 34 процента энергии; электрон и его положительно заряженный антипод позитрон с 16 процентами энергий. Половину энергии уносят нейтрино частицы с весьма большой проникающей способностью. Удержать их невозможно: свою долю энергии они уносят в необозримые просторы вселенной. Однако другую половину удержать удается. Если аннигиляция будет происходить в плотной среде, то энергия, уносимая нейтрино, уменьшается до 9 процентов.
Казалось бы, все обстоит ладно. Но есть один неприятный факт: на Земле, да и, кажется, во всей Солнечной системе антивещества нет. В распоряжении людей есть только технические способы получения искусственного антивещества. Здесь уже есть некоторые успехи. В лабораториях получены антипротоны, антиэлектроны (позитроны), даже созданы атомы антивещества: антиводород, антигелий. Однако задача - значительное уменьшение количества энергии, необходимой для создания античастиц, - еще не решена. В существующих способах на создание антипротонов или антиэлектронов бомбардировкой ядер ускоренными электронами или протонами тратится почти столько же энергии, сколько получается потом при аннигиляции полученных античастиц с частицами. Коэффициент полезного действия в такой схеме составляет не более 0.1 процента. Следовательно, чтобы получить одну килокалорию аннигиляционной энергии, надо предварительно затратить 999 килокалорий энергии того вида, которым мы располагаем, например электроэнергии.
Может ли устроить человека процесс, когда в конце концов энергии получается меньше, чем ее затрачивается? Принципиально может. В жизни мы пользуемся такими процессами. Например, на получение одной килокалории электроэнергии затрачивается 2,5 килокалории тепла сжигаемого топлива. Зато в результате получается качественно новый вид энергии, который можно эффективно использовать в промышленности, быту.
Для чего же нужна аннигиляционная энергия антивещества с калорийностью, в 100-300 раз превышающей калорийность ядерного топлива? Возможно, в далеком будущем она понадобится только для космических аппаратов. Для земной энергетики такой процесс не подходит.
Пожалуй, стоит рассказать еще об одной идее, которая родилась на заре работ по термоядерному синтезу.
Напомним: чтобы осуществить термоядерную реакцию, нужно разогреть плазму до 100-150 миллионов градусов. Лишь такая температура может обеспечить высокие скорости ядер, достаточные для преодоления силы отталкивания их положительных зарядов. Но допустим, что удалось бы нейтрализовать заряд одной из взаимодействующих частиц. При таком условии отпала бы необходимость в высокой температуре.