Энергия наших мыслей
Шрифт:
Так и с биоэнергией. Мы много знаем, много понимаем, но это не истина в последней инстанции. И на пути познания нас еще ждет масса удивительных открытий. Но вернемся к птицам.
Дыхательная система птиц если не самая совершенная, то самая сложная среди позвоночных. В дыхательных путях мертвый объем ограничивается только трахеей, а воздух движется через легкие только в одном направлении, причем полный цикл воздух совершает за две пары дыхательных движений (вдох-выдох-вдох-выдох), так называемое двойное дыхание. Бронхи, войдя в легкое, отдают воздух во вторичные бронхи, частично выходящие за пределы легкого и образующие воздушные мешки, располагающиеся в различных частях тела птицы. Вторичные бронхи сообщаются между собой многочисленными парабронхами,
Примечательно, что в дыхательных путях птиц не обнаружено никаких клапанов и все причудливые движения воздуха происходят по законам гидродинамики. Интенсивности газообмена способствует наличие противоточной системы кровообращения в легких птиц, т. е. кровь и воздух движутся в противоположных направлениях, навстречу друг другу. Из-за этого “более свежие” порции воздуха контактируют с “более артериальной” кровью, что обеспечивает эффективный газообмен. Птицы из 1 литра воздуха извлекают 40 мл кислорода (млекопитающие — 30 мл), при этом напряженность кислорода в артериальной крови больше, а двуокиси углерода меньше, чем в выдыхаемом воздухе!
Молекула кислорода обладает рядом уникальных свойств. Она имеет два электрона с параллельными спинами на валентной молекулярной орбитали (М ^^, где значок ^ обозначает электрон с определенным направлением спина). Такое состояние внешней электронной оболочки называется триплетным. Триплетный кислород является потенциальным источником энергии, однако она не может быть спонтанно реализована, ибо в соответствии с законом сохранения Вигнера прямая реакция с молекулами в синглетном состоянии невозможна. Это одно из условий стабильности триплетного кислорода. Существует несколько путей активации кислорода, и один из них — одноэлектронное размножение. При захвате электронов кислородом возникают промежуточные продукты — активные формы кислорода (АФК). Некоторые из них являются свободными радикалами — молекулами, имеющими нечетное число электронов на внешних орбиталях. Для получения второго электрона эти молекулы активно взаимодействуют с окружающими молекулами, служащими в качестве доноров электронов. Свободный радикал захватывает электрон и превращается в молекулу, в то время как его донор начинает искать своего донора. Таким образом, свободные радикалы могут инициировать цепную реакцию в растворах органических молекул, таких, как липиды, протеины, карбогидраты. Оптимальной средой для таких процессов является кровь.
Радикальные цепные реакции действительно могут повреждать биологические молекулы ин-витро, поэтому АФК рассматриваются в биологической и медицинской литературе как вредный для здоровья фактор. Однако большой объем данных заставляет предположить, что в действительности АФК являются важным элементом биологического процесса. По различным оценкам, 10-15% потребляемого кислорода в покое преобразуется по одноэлектронному механизму, в ходе которого генерируются АФК. В условиях стресса или активной работы, когда активность энзимов, генерирующих АФК, увеличивается, потребление кислорода увеличивается на 20-40%, и весь этот избыток преобразуется по одноэлектронному механизму. Следовательно, АФК должны играть важную роль в нормальной физиологии.
Принципиально важно, что в процессе рекомбинации выделяются кванты энергии, эквивалентные энергии видимого или ультрафиолетового диапазона. Основной донор в этих
В каждой цепной реакции освобождается до 8 эВ энергии. Для птицы, дышащей влажным воздухом во время полета, это создает дополнительный источник энергии для генерации АТФ в мышцах. 1 эВ равен 1.6х10-19 Дж, в 1 см3 воздуха находится примерно 1016 молекул, поэтому для генерации 100 кДж энергии птица должна переработать примерно 106 см3 воздуха. Частота дыхания птиц в полете составляет 60-160 циклов в минуту. В среднем это обеспечивает пропускание 103-104 см3 воздуха в минуту. Поэтому для пропускания воздуха птице потребуется 102-103 минут, или от 2 до 16 часов. Это время сравнимо с длительностью миграционного полета.
Описанный механизм не претендует на полноту деталей, но он позволяет сделать несколько заключений:
1. Современные биофизические концепции еще находятся в процессе формирования, окончательная картина далека от завершения.
2. Биологические организмы извлекают энергию не только из пищи, но непосредственно из воздуха, воды и света.
3. Внешние стимулы играют фундаментальную роль в активации внутренних процессов жизнедеятельности. Иными словами, сверхслабые информационные стимулы активируют каскады цепных гомокинетических реакций.
Изложенные принципы в определенной степени приложимы и к процессам энергетического обеспечения организма человека, особенно в процессе активной работы, например продолжительных спортивных состязаний. Например, на соревнованиях по триатлону спортсмены затрачивают огромное количество энергии, не имея возможности существенного ее пополнения. Естественно, рассмотренный механизм требует детального изучения применительно к организму человека, однако даже в подобном гипотетическом варианте он позволяет наметить практические пути увеличения энергообеспечения организма спортсмена.
ЭНЕРГИЯ ФИЗИЧЕСКАЯ И ПСИХИЧЕСКАЯ
Каждый испытывал внезапный подъем сил и энергии, а в другой момент — опустошение и бессилие. Йоги, медитируя, учатся “работать с энергиями”, “перераспределять энергии”, ощущая при этом и в самом деле буквально осязаемое течение этих энергий. Увлечение различными практиками и досужие разговоры об энергетике в популярных телепередачах породили скептическое отношение многих врачей и академических ученых к этому вопросу. Действительно, есть ли что-то специфическое в “психической энергии” или это просто обозначение чего-то, что хорошо знает наука, но не понимает широкая публика? Постараемся в этом разобраться.
Рене Декарт в XVII веке провозгласил разделение души и тела. Этим он обеспечил возможность развития науки в условиях полного господства Церкви в современном ему обществе. Эта концепция явилась базой материализма, полностью отрицающего понятие души и духовности. “Человек — не более чем сложно организованная машина” — провозглашают многие ученые вплоть до нашего времени. Только в начале XX века благодаря трудам Зигмунда Фрейда и его последователей психология приобрела статус науки, то есть было признано, что психическая деятельность может являться предметом исследования и, соответственно, регулирования. К концу XX века стали проясняться основные механизмы влияния психики на процессы физического тела. Оказалось, что наши мысли, чувства и эмоции действительно влияют на физиологические процессы, и чем больше мы изучаем этот процесс, тем больше приходим к мысли, что это влияние во многом оказывается определяющим для здоровья и долголетия. Хотя до сих пор даже большинство врачей слабо представляют, насколько это важно.