Чтение онлайн

на главную - закладки

Жанры

Энергия жизни. От искры до фотосинтеза
Шрифт:

Давайте сравним платиновый порошок и молекулу фермента. Как я уже объяснял в главе 12, каталитические способности платины, возможно, объясняются тем, что она имеет свободные валентные связи, с помощью которых притягивает к себе молекулы тех веществ, реакцию которых катализирует. Такое связывание происходит несколько активнее, если поверхность платинового катализатора имеет неправильную форму, — поскольку молекулы реагирующих веществ также имеют неправильную форму, то им может оказаться естественнее плотно прилечь там, где форма поверхности платины соответствует их собственной.

На поверхности платины возможны любые неправильности, поэтому для любой молекулы там окажется

соответствующая форма. В результате множество различных молекул могут оказаться временно привязанными к поверхности платины, где они, соответственно, с готовностью вступают в реакцию с другими молекулами. Поэтому платина, как и все прочие катализаторы такого рода, способна охватывать своим действием сравнительно большое число веществ. Но у катализаторов такого рода есть и недостаток — поскольку в каждом отдельно взятом веществе они действуют далеко не на всю площадь (а только на ту ее часть, неправильность формы которой соответствует неправильности формы реагирующих молекул), то и коэффициент полезного действия таких молекул невелик. Для каждого отдельно взятого вещества большая часть поверхности катализатора оказывается неиспользуемой.

С ферментами все обстоит по-другому. Их поверхность имеет не случайную форму, а, напротив, строго упорядоченную с помощью биохимических процессов, происходящих в организме. Чередующиеся радикалы разных аминокислот, составляющих пептидную цепочку, представляют неправильности всех типов и размеров. Некоторые из радикалов, например аспарагиновая кислота или глютаминовая кислота, обладают отрицательными зарядами и будут притягивать любой положительный заряд, как только в пределах досягаемости окажется несущая такой заряд молекула. Другие же, например лизин, аргинин или гистидин, обладают положительным зарядом и будут притягивать молекулы с отрицательными. Третьи, например серии, треонин или тирозин, электрически нейтральны, зато имеют в своем составе группы, способные к образованию водородных связей.

Что же касается радикалов, не образующих связей, например валина, аланина, лейцина, изолейцина, фенилаланина и еще нескольких, то их роль в данном случае защитная; они служат барьерами для того, чтобы только молекулы строго определенной формы могли проникнуть в зону досягаемости тех радикалов, которые смогут их ухватить.

Все радикалы находятся друг к другу в строго определенном отношении, зафиксированном водородными связями, удерживающими молекулу в жесткой форме. В результате к определенному ферменту может присоединиться молекула только строго определенного вида, и только такая молекула в дальнейшем вступит в катализируемую ферментом реакцию. Молекула, подвергающаяся реакции, катализируемой ферментом, именуется субстратом этого фермента. Разумеется, любое воздействие на фермент, приводящее к разрыву водородных связей и установленных для него отношений между радикалами, приведет к потере ферментом его уникальных каталитических свойств.

У такой строгой специфичности молекулы фермента есть одно интересное следствие. Стоит лишь задуматься о химических механизмах жизни как таковой, как становится ясно, что функционирование организма зависит от бесперебойной работы тысяч различных химических реакций с участием множества веществ. Если ферменты настолько специфичны, то означает ли это, что каждый организм — да что там организм, что каждая клетка в организме! — должен быть полон различных ферментов, каждый из которых необходим для одной-единственной реакции?

Да. Так оно и есть. Хоть клетка и имеет крайне малый объем, около 0,03 мм в диаметре, она все же гораздо больше, чем молекула белка. В клетке достаточно места для тысяч различных ферментов. Более

того, места хватит для тысяч молекул каждого из них.

На первый взгляд это совершенно неразумная избыточность. Но на самом деле — ровно наоборот, экономичность и эффективность такой системы выше всяких похвал.

Каждый фермент, имеющий строго определенную задачу, обладает гораздо большей полезной площадью поверхности, чем случайным образом оформленная платиновая частица. Он гораздо эффективнее.

Скорость катализируемой реакции измеряется «оборотным числом». Оборотное число — это количество молекул субстрата, ежеминутно подвергающихся реакции при заданной температуре под действием одной молекулы фермента. Фермент каталаза, катализирующий распад перекиси водорода на воду и кислород, имеет оборотное число 2 500 000 при 0 °С. Оборотные числа большинства ферментов ниже, чем каталазы, но все равно многократно выше, чем у катализаторов неферментного происхождения.

Предположим, что различные ферменты в некотором порядке распределены по клетке (а так оно и есть, как мы увидим позже), и тогда движущиеся по клетке субстраты каждую секунду систематически улавливаются и подвергаются преобразованиям.

Кроме того, наличие множества специализированных катализаторов, а не нескольких общих, предоставляет организму возможность тончайшего управления клеточной химией. Уменьшая или увеличивая число молекул того или иного фермента в клетке, можно ускорять или замедлять ход той или иной реакции — одной из тысяч, и только ее.

Если в живом организме ежесекундно проходят тысячи различных реакций взаимодействия, независимо контролируемые тысячами различных ферментов, то выходит, что даже самые примитивные формы жизни устроены сложнее, чем самые сложные рукотворные механизмы.

Факт в том, что живая клетка состоит из гораздо большего количества движущихся деталей, так сказать, чем любое творение рук человеческих, и лишь микроскопически малый размер этих деталей позволяет нам свысока утверждать, что клетка — это «всего лишь» микроскопическая капелька. А если мы говорим о целых организмах, состоящих из триллионов клеток, то тут сложность всей конструкции возрастает до неописуемых величин. Нелепы были бы попытки сравнить ящерицу с камнем (разве что по параметру физического размера). Поэтому я даже не буду задерживаться на сравнивании человека со звездой — понятно, что сравнение будет не в пользу звезды.

Разумеется, в основе вышеприведенного анализа каталитической деятельности ферментов лежит представление о том, что субстрат вступает с ферментом в физический контакт и образует некий промежуточный комплекс «субстрат-фермент». Сложно избежать этого допущения, потому что иначе пришлось бы предположить, что фермент оказывает на молекулу некое бесконтактное воздействие — а ученые не любят бездоказательной мистики.

К тому же имеются убедительные, хоть и косвенные, свидетельства в пользу такого предположения. К примеру, предположим, что в раствор фермента добавили немного субстрата. Реакция начинается сразу же, и химики могут определить скорость, с которой исчезает субстрат или появляется итоговое вещество реакции, — так они получают скорость реакции. Если в тот же раствор фермента добавить больше субстрата — скорость реакции будет выше. Можно воспользоваться такой аналогией: если в супермаркет запустить больше покупателей, то они начнут выносить больше товаров. Если одномоментно удвоить количество покупателей в супермаркете, то логично ожидать, что и товары с полок будут исчезать в два раза быстрее. Вот по тому же принципу удваивается и скорость реакции, если удвоить концентрацию субстрата.

Поделиться:
Популярные книги

Вадбольский

Никитин Юрий Александрович
1. Вадбольский
Фантастика:
попаданцы
5.00
рейтинг книги
Вадбольский

Москва – город проклятых

Кротков Антон Павлович
1. Неоновое солнце
Фантастика:
ужасы и мистика
постапокалипсис
5.00
рейтинг книги
Москва – город проклятых

Осколки (Трилогия)

Иванова Вероника Евгеньевна
78. В одном томе
Фантастика:
фэнтези
8.57
рейтинг книги
Осколки (Трилогия)

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Господин моих ночей (Дилогия)

Ардова Алиса
Маги Лагора
Любовные романы:
любовно-фантастические романы
6.14
рейтинг книги
Господин моих ночей (Дилогия)

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Мой личный враг

Устинова Татьяна Витальевна
Детективы:
прочие детективы
9.07
рейтинг книги
Мой личный враг

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Законы Рода. Том 8

Андрей Мельник
8. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 8

Тагу. Рассказы и повести

Чиковани Григол Самсонович
Проза:
советская классическая проза
5.00
рейтинг книги
Тагу. Рассказы и повести