Чтение онлайн

на главную - закладки

Жанры

Эта идея должна умереть. Научные теории, которые блокируют прогресс
Шрифт:

Летом 2013 года, через год после открытия бозона Хиггса, группа физиков-специалистов по частицам собралась в Миннеаполисе и предложила создать 62-мильный коллайдер, который, как они заявили, позволил бы «изучить косвенные эффекты новой физики на W- и Z-бозоны, топ-кварк и другие системы» [25] . Такие предложения множатся как спам, мусорная почта или ползучие сорняки. Но рано или поздно чаша нашего терпения переполняется – даже в науке, которая, между прочем, тоже не является какой-то священной коровой.

25

Community Planning Study: Snowmass, 2013,

«Energy Frontier Lepton and Photon Colliders».
 – Примеч. авт.

В конце концов, это просто глупо: платить все больше – причем платить вечно, бесконечно, снова и снова – за все меньший объем знаний о гипотетических крупинках материи, которые уводят далеко в бесконечно малое на границу с абсолютным Ничто.

Физики, занимающиеся изучением фундаментальных частиц, явно никогда не слышали ни о «пределах роста», ни о каких-либо иных пределах. Но им точно надо познакомиться с этой концепцией, потому что фундаментальное не всегда и не автоматически важнее практического. Каждый доллар, потраченный на сверкающий новый мегаколлайдер, – это доллар, который уже не может быть потрачен на другие вещи, такие как больницы, разработка вакцин, предотвращение эпидемий, помощь пострадавшим от стихийных бедствий и так далее. Ускоритель частиц размером с небольшую страну явно уходит далеко за сколько-нибудь приемлемый финансовый горизонт, и вряд ли разумно приносить в жертву столь огромные средства ради крохотных подвижек в тайном, теоретическом, почти каббалистическом знании.

В некрологе Сверхпроводящему суперколлайдеру (Good-bye to the SSC, «Прощание с ССК») историк науки Дэниел Кевлс пишет, что фундаментальные исследования в физике следует продолжать, «но не любой ценой» [26] . Я с этим согласен. Некоторые научные знания просто не стоят затраченных на них средств.

Фальсифицируемость

Шон Кэрролл

Физик-теоретик, Калифорнийский технологический институт. Автор книги The Particle at the End of the Universe [27] .

26

Engineering & Science, Winter 1995. – Примеч. авт.

27

Частица на краю Вселенной / пер. Татьяны Лисовской. М.: БИНОМ. Лаборатория знаний, 2015.

В мире, где научные теории часто выглядят странно и вступают в явное противоречие с интуицией, а абсурд в самом широком ассортименте пытается добиться признания в качестве «научной» истины, возникает проблема различения науки и не-науки – философы называют это «проблемой демаркации». Карл Поппер предложил знаменитый критерий фальсифицируемости: научной может считаться только такая теория, предсказания которой могут быть однажды опровергнуты.

Это ценная идея, но она далеко не полностью закрывает проблему. Поппера интересовали такие теории, как психоанализ Фрейда и политэкономия Маркса, которые он считал ненаучными. Вне зависимости от того, что на самом деле происходит с человеком или обществом, заявлял Поппер, подобные теории всегда смогут рассказать историю, в которой факты будут соответствовать теоретическим предположениям. Поппер противопоставлял им теорию относительности Эйнштейна, которая дала конкретные количественные предсказания, значительно опередившие свое время. (Одно из предсказаний общей теории относительности заключалось в том, что Вселенная должна расширяться или сжиматься, и это побудило Эйнштейна усовершенствовать теорию, потому что сначала он думал, что Вселенная на самом деле статична. Так что даже из этого примера видно, что критерий фальсифицируемости не так однозначен, как кажется.)

Современная теоретическая физика простирается в области, весьма далекие от повседневной жизни,

и иногда ее связь с экспериментом становится, мягко говоря, неубедительной. Теория струн и другие подходы к проблеме квантовой гравитации включают феномены, которые, похоже, могут проявить себя только при энергиях, в громадной степени превосходящих те, которые доступны нам здесь, на Земле. Мультиверс в космологии и многомировая интерпретация квантовой механики постулируют существование реальностей, доступ к которым для нас невозможен. Некоторые ученые, опираясь на Поппера, предположили, что эти теории ненаучны, поскольку в принципе не опровергаемы.

Однако верно прямо противоположное. Независимо от того, можем ли мы их наблюдать непосредственно, объекты, которыми оперируют эти теории, либо реальны, либо нет. Отказ от рассмотрения самой возможности их существования – хотя они могут играть важнейшую роль в мироустройстве, – исходя из некоего априорного принципа, сам по себе совершенно ненаучен.

Критерий фальсифицируемости указывает на нечто истинное и важное в устройстве науки, но он превращается в слепое орудие в ситуации, которая требует тонкости и точности. Правильнее сделать акцент на двух главных чертах хорошей научной теории: однозначности ее предсказаний и возможности их экспериментальной проверки. Первое подразумевает, что теория сообщает нам нечто ясное и недвусмысленное о том, как функционирует реальность. Теория струн говорит, что в некоторых областях пространства ее параметров обычные частицы ведут себя как замкнутые или разомкнутые одномерные струны.

Релевантное пространство параметров может быть недоступным для нас, но оно является неотъемлемой частью теории. В мультиверсе обязательно должны быть области с отличными от нашей Вселенной свойствами – пусть даже для нас эти области и недостижимы. Вот что отличает подобные теории от концепций, которые Поппер пытался классифицировать как ненаучные. (Сам Поппер понимал, что научные теории должны быть опровергаемыми «в принципе», но об этом уточнении часто забывают в современных дискуссиях.)

Вторая черта хорошей научной теории требует более осторожного подхода. На первый взгляд, ее легко спутать с утверждением, что научная теория «делает предсказания, которые можно экспериментально опровергнуть». Но в реальном мире взаимоотношения между теорией и экспериментом совсем не так банальны. В конце концов, научная теория оценивается по ее способности объяснять факты – но путь к этому объяснению не обязан быть прямым.

Возьмем концепцию Мультивселенной, в которой часто видят потенциальное решение тонких проблем современной космологии. Например, мы верим, что в пустом пространстве присутствует малая, но не нулевая вакуумная энергия. Это ведущая теория для объяснения наблюдаемого ускоренного расширения Вселенной, за открытие которого в 2011 году была присуждена Нобелевская премия по физике. Проблема для теоретиков заключается не в том, что ненулевую энергию вакуума трудно объяснить; она в том, что предсказываемое теорией значение этой энергии значительно больше той, которую мы наблюдаем.

Если Вселенная, которую мы видим вокруг себя, – единственная, то энергия вакуума – это универсальная константа, единая для всей природы, и перед нами стоит необходимость ее объяснения. Если, с другой стороны, мы живем в Мультивселенной, то энергия вакуума может быть совершенно разной в разных ее областях (частных вселенных), и на ум сразу приходит объяснение: там, где энергия слишком велика, условия неблагоприятны для существования жизни. Срабатывает эффект отбора, и нам приходится предсказать малую величину энергии вакуума. Именно такая цепочка рассуждений привела Стивена Вайнберга к предсказанию ее величины задолго до того, как было открыто ускоренное расширение Вселенной.

Мы не можем (насколько нам известно) непосредственно наблюдать другие области Мультивселенной (частные вселенные), но их существование самым серьезным образом сказывается на том, как мы оцениваем данные в той области Мультивселенной, которую мы наблюдаем. Именно в этом смысле успех или крах теории являются абсолютно эмпирическими: ее ценность заключается не в том, что она тонко продумана или дополняет некий недостаточно ясный аргумент, а в том, что она помогает нам оценивать данные. Даже если мы никогда не посетим эти другие частные вселенные.

Поделиться:
Популярные книги

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Владеющий

Злобин Михаил
2. Пророк Дьявола
Фантастика:
фэнтези
8.50
рейтинг книги
Владеющий

Совершенный: Призрак

Vector
2. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: Призрак

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Герцогиня в ссылке

Нова Юлия
2. Магия стихий
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Герцогиня в ссылке

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Часовая битва

Щерба Наталья Васильевна
6. Часодеи
Детские:
детская фантастика
9.38
рейтинг книги
Часовая битва

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Боярышня Дуняша 2

Меллер Юлия Викторовна
2. Боярышня
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Боярышня Дуняша 2

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов