Чтение онлайн

на главную - закладки

Жанры

Этот «цифровой» физический мир
Шрифт:

Первое, что модель зарядовых разбалансов помогает нам прояснить – это природа тех энергий возбуждения в атоме, которые попадают в континуум между квантовыми уровнями. Квантовая теория отказывает в существовании этому континууму – полагая, что энергия возбуждения может соответствовать только дискретным стационарным уровням. Но, как мы уже излагали выше (3.1), этот подход квантовой теории, с точки зрения практики, избыточно категоричен. Атомные спектральные линии соответствуют резонансным переходам, с одного квантового уровня на другой – происходящим с наибольшими вероятностями – но квантовые переходы с участием промежуточного континуума, несомненно, тоже происходят (3.1). Поэтому адекватные представления об атомных структурах должны пояснять расклад энергий для ситуаций, при которых энергия связи атомарного электрона соответствует некоторому значению из континуума между квантовыми уровнями.

Как мы излагали выше (4.9), размер атомарной связки «протон-электрон», которая имеет энергию связи, соответствующую тому или иному возбуждённому стационарному состоянию, равен её размеру в основном состоянии. Иными словами, радиус атома, при нахождении электрона на любом квантовом уровне энергии, один и тот же – и равен радиусу в основном состоянии.

Логично допустить, что и при наличии у электрона энергии, попадающей в континуум между квантовыми уровнями, радиус атома остаётся прежним. Тогда, рассмотрим случай наличия у связки «протон-электрон» энергии возбуждения, попадающей в континуум между основным и первым стационарным уровнями. Если размер связки «протон-электрон» при этом равен размеру в основном состоянии, то, согласно (4.9.1), и частота атомных прерываний такова же, как в основном состоянии, и, соответственно, собственные энергии протона и электрона в этой связке таковы же, как в основном состоянии. Но поскольку энергия их связи при этом уменьшена на величину энергии возбуждения, то нам придётся допустить, что энергия возбуждения – это какая-то особая форма энергии, о которой мы не говорили прежде. Мы полагаем, что это – энергия колебаний зарядового разбаланса, причём эти колебания обусловлены колебаниями скважности у прерываний, связующих протон и электрон. Сразу заметим, что у этих колебаний скважности могут варьироваться два параметра: размах и частота. Соответственно, и энергия этих колебаний скважности должна зависеть, вообще говоря, от тех же двух параметров – как и энергия классических осцилляций. Однако, при поглощении атомом нерезонансного кванта света и соответствующем попадании энергии возбуждения атома в междууровневый континуум, энергия этого кванта должна быть беспроблемно превращаема в энергию колебаний зарядового разбаланса, и обратно. Поскольку энергия кванта света зависит только от частоты, логично допустить, что беспроблемная превращаемость имеет место, если энергия колебаний зарядового разбаланса точно так же зависит только от частоты. Такое возможно, если, какова бы ни была энергия поглощённого нерезонансного кванта, размах результирующих колебаний зарядового разбаланса является одним и тем же – и мы полагаем, что он при этом максимален. Т.е., мы полагаем, что энергия hf нерезонансного кванта света равна энергии колебаний зарядового разбаланса, происходящих с частотой f и с полным размахом изменения скважности попеременных прерываний: от 0% до 100%. При таком раскладе вырисовывается, на наш взгляд, простейшая «сшивка» логики «цифрового» микромира и «аналогового» макромира. Действительно, энергии квантовых пульсаций, т.е. неопределённо долгой цепочки мгновенных смен двух состояний, ставится в соответствие энергия неопределённо долгих гармонических колебаний – причём, одинаковые приращения этих двух энергий вызываются одинаковыми приращениями их частот!

Такой подход позволяет прояснить вопрос, который может показаться риторическим – зачем в атоме требуются возбуждённые стационарные уровни энергии. Но неспроста же они организованы! Пусть связка «протон-электрон», находившаяся в основном состоянии (ground state), испытывает нерезонансное возбуждение, энергия которого попадает в континуум над основным уровнем. При этом расклад энергий таков: собственные энергии протона и электрона те же, что и в основном состоянии, а энергия их связи уменьшена на величину энергии возбуждения, т.е. на величину энергии колебаний зарядового разбаланса – с полным размахом. Тогда, как можно видеть, частота этих колебаний зарядового разбаланса имеет ограничение сверху. Действительно, на один период T0 связующих прерываний всегда приходится лишь одно значение скважности, и минимальное число этих периодов, на протяжении которых скважность может измениться с полным размахом, равно двум: на одном периоде скважность равна 0%, а на другом – 100%. Таким образом, частота колебаний зарядового разбаланса, равная половине частоты связующих прерываний, является максимально возможной – при этом энергия возбуждения равна половине энергии связи в основном состоянии. Картина электронных пульсаций в связке «протон-электрон» для этого случая приведена на левой части Рис.5.1.2.

Рис.5.1.2 Высокочастотное заполнение – электронные пульсации.

Поразительным образом, эта картина идентична картине, имеющей место при половинной частоте связующих прерываний и отсутствии колебаний зарядового разбаланса – т.е. при чистом случае вдвое меньшей энергии связи (правая часть Рис.5.1.2). Такое совпадение мы расцениваем как свидетельство о самосогласованности и правдоподобности нашей модели.

Теперь заметим: ограниченность частоты колебаний зарядового разбаланса значением, равным половине частоты связующих прерываний, означает, что у связки «протон-электрон», без принятия специальных мер, половина возможного диапазона энергий связи была бы недоступна при возбуждении тем или иным способом. Это существенно ограничивало бы возможности свободного превращения энергии из одних форм в другие. Устраняющие этот недостаток специальные меры и заключаются, на наш взгляд, в устроении систем стационарных квантовых уровней у атомарных связок «протон-электрон». Так, при пребывании связки «на первом возбуждённом уровне», энергия связи равна энергии ионизации с этого уровня, а колебания зарядового разбаланса отсутствуют. При нерезонансном возбуждении, энергия которого попадает в континуум над первым возбуждённым уровнем, собственные энергии протона и электрона те же, что и на этом уровне, а энергия возбуждения, т.е. энергия колебаний зарядового разбаланса, отсчитывается с нуля, соответствующего этому уровню. Опять же, эта энергия не может превысить половину энергии ионизации с этого уровня. Чтобы была уменьшена остающаяся «мёртвая зона» энергий связи, требуется следующий стационарный уровень – и так далее. Таким образом, наша модель объясняет – по крайней мере, качественно – назначение возбуждённых стационарных уровней энергии в атоме, а также характерное сгущение этих уровней по мере их приближения к уровню ионизации.

По логике вышеизложенного, при приобретении невозбуждённой атомарной связкой «протон-электрон» кванта нерезонансного возбуждения, соответствующего континууму, скажем, между первым и вторым возбуждёнными стационарными уровнями, энергия

этого кванта дробится на две формы: часть её идёт на перевод связки на первый стационарный уровень, а остаток идёт на энергию возбуждения в форме колебаний скважности зарядового разбаланса. Таким дроблением энергии легко объясняется феномен флуоресценции при облучении вещества нерезонансным ультрафиолетом – когда высвечивание происходит при «скатывании» электрона не в основное состояние, а на ближайший нижерасположенный стационарный уровень.

Как можно видеть, зарядовые разбалансы, допуская сшивку «цифровой» и «аналоговой» логики, обеспечивают универсальность квантового электромагнитного взаимодействия – делая возможным поглощение-излучение атомами нерезонансных квантов. Но мы полагаем, что зарядовые разбалансы, имея «аналоговую» природу, способны обеспечивать также чисто волновое электромагнитное взаимодействие – т.е. участвовать в передаче радиоволн (5.3). При этом, конечно, энергия колебаний зарядовых разбалансов должна зависеть, как и энергия классических осцилляций, от двух параметров – от частоты и от размаха. Мы полагаем, что связка «протон-электрон» может в одно и то же время испытывать как «квантовые» колебания зарядового разбаланса, с полным размахом, так и «классические» колебания зарядового разбаланса – с частотой и размахом, определяемыми параметрами вынуждающего воздействия. При этом синусоиды «квантовых» и «классических» колебаний зарядового разбаланса математически складываются – но с ограничениями снизу и сверху, т.к. скважность не может быть меньше 0% и больше 100%.

5.2. Зарядовые разбалансы в неполярных диэлектриках.

Неполярными называются диэлектрики, молекулы которых не обладают самостоятельным дипольным моментом. Согласно традиционному подходу [П1,Т1,К1], в постоянном однородном электрическом поле происходит поляризация таких молекул, т.е. пространственное разделение центров положительного и отрицательного зарядов молекулы. Как полагают, именно благодаря тому, что индуцированные таким образом дипольные моменты молекул ориентируются против внешнего поля, результирующее поле в диэлектрике оказывается ослабленным в раз, где - диэлектрическая проницаемость. Причём, определяется величиной вектора поляризации в диэлектрике, равного сумме элементарных молекулярных диполей во всём объёме диэлектрика [Т1,К1].

Такой подход, на наш взгляд, не выдерживает критики даже на уровне элементарных качественных соображений. Пусть диэлектрическая прокладка вносится в промежуток между пластинами заряженного плоского конденсатора. Обратим внимание: здесь «внешнее поле» сформировано благодаря макроскопическому разделению противоположных зарядов в пространстве – что подчёркивается выражением E=U/d, где E – напряжённость электрического поля, U – разность потенциалов, d – расстояние, на котором создана эта разность потенциалов. Такое поле может быть ослаблено инверсным макроскопическим же разделением зарядов, но никак не микроскопическими разделениями зарядов внутри диэлектрика, при которых средняя объёмная плотность заряда остаётся нулевой. Можно убедиться в том, что ослабление внешнего поля внутри прокладки, благодаря выстраиванию в ней векторов диполей в одном направлении, могло бы иметь место лишь за счёт того, что на поверхностях прокладки получалась бы ненулевая поверхностная плотность заряда – отрицательная со стороны положительной пластины конденсатора, и наоборот. При этом весь эффект ослабления внешнего поля был бы обеспечен частичной нейтрализацией зарядов на пластинах конденсатора поверхностными зарядами на диэлектрике. И тогда не имела бы значения ориентация диполей в подавляющей части объёма диэлектрика – за вычетом нескольких поверхностных молекулярных слоёв. Значит, для ослабления внешнего поля в диэлектрике, не требуется индуцировать и ориентировать диполи во всём его объёме.

Этот качественный вывод подкрепляется ещё более впечатляющими количественными оценками расстояний, на которые, согласно традиционному подходу, должны быть разделены заряды в индуцированных молекулярных диполях. Комбинируя уравнение Клаузиуса-Мосотти (вид которого в системе СИ дан, например, в [К1]) и выражение для поляризуемости молекул (там же), получаем для искомого расстояния выражение

, (5.2.1)

где M– масса молекулы, - плотность диэлектрической среды, 0– диэлектрическая проницаемость вакуума, E– напряжённость внешнего поля, e– элементарный электрический заряд. Считается [Ф1], что уравнение Клаузиуса-Мосотти хорошо работает для газов, в том числе при нормальных условиях; рассмотрим случай молекулярного кислорода, для которого =1.00055 [Е1], M=321.6710– 27 кг, =1.429 кг/м3 [Е1]. Тогда из (5.2.1) следует, что, при E=5104 В/м, разделение зарядов в индуцированных молекулярных диполях должно составлять 0.0057 Ангстрем. Примем эту цифру в качестве усреднённой, поскольку у двухатомных молекул, образованных с помощью ковалентных связей – к тому же, двойных – поляризуемость должна иметь ярко выраженную угловую анизотропию по отношению к оси молекулы. И заметим, что при подходе Клаузиуса-Мосотти игнорируются хаотически возникающие молекулярные диполи – из-за соударений молекул газа при их тепловом движении. Для грубой оценки характерного теплового разделения зарядов можно аппроксимировать зависимость «энергия-расстояние» квадратичной параболой – с параметрами, соответствующими молекулярной потенциальной яме. Характерные масштабы здесь таковы: молекула диссоциирует при изменении её размера на 1 Ангстрем. Тогда, для случая типичной энергии диссоциации 5 эВ, характерной тепловой энергии ~kT (при T=300оК) соответствовало бы хаотическое тепловое разделение зарядов в молекуле на характерную величину ~0.072 Ангстрем – которая на порядок превышает полученную выше величину их упорядоченного разделения во внешнем поле. Значит, если даже это поле индуцировало бы молекулярные диполи, эффект от такого индуцирования был бы погребён в тепловых шумах. Тогда, по логике традиционного подхода, в большом интервале давлений и температур, диэлектрическая проницаемость неполярных газов при слабых внешних полях была бы равна единице, как и у вакуума – чего на опыте не наблюдается.

Поделиться:
Популярные книги

На границе империй. Том 10. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 4

Город Богов 4

Парсиев Дмитрий
4. Профсоюз водителей грузовых драконов
Фантастика:
юмористическое фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Город Богов 4

Темный Лекарь 2

Токсик Саша
2. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 2

Черный Маг Императора 15

Герда Александр
15. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
фантастика: прочее
5.00
рейтинг книги
Черный Маг Императора 15

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Новые горизонты

Лисина Александра
5. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Новые горизонты

Черный дембель. Часть 4

Федин Андрей Анатольевич
4. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 4

Плохой парень, Купидон и я

Уильямс Хасти
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Плохой парень, Купидон и я

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша

Потомок бога 3

Решетов Евгений Валерьевич
3. Локки
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Потомок бога 3

Господин следователь. Книга пятая

Шалашов Евгений Васильевич
5. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга пятая

Попаданка 2

Ахминеева Нина
2. Двойная звезда
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка 2

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Менталист. Революция

Еслер Андрей
3. Выиграть у времени
Фантастика:
боевая фантастика
5.48
рейтинг книги
Менталист. Революция