Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Во всех механических экспериментах, независимо от их типа, мы должны определять положения материальных точек в некоторый определённый момент времени, так же как и в указанном выше опыте с падающим телом. Но положение всегда должно определяться по отношению к чему-то, подобно тому как в предыдущем случае оно определялось по отношению к башне и масштабу. Чтобы определить положения тел, мы должны иметь то, что мы называем некоторым телом отсчёта, или системой отсчёта. Так, при определении положений предметов и людей в городе такую систему отсчёта представляют улицы и проспекты. До сих пор мы не беспокоились о том, что надо определить систему отсчёта, когда приводили законы механики, потому что мы живём на Земле и перед нами в любом частном случае не возникает трудностей, когда мы выбираем систему отсчёта, жёстко связанную с Землёй. Эта система отсчёта, к которой мы относим все наши наблюдения, построенная из твёрдых неизменяемых тел, — своеобразные механические леса, — называется системой координат.

До сих пор все наши физические утверждения имели некоторый недостаток. Мы не обращали внимания

на тот факт, что все наблюдения должны производиться в определённой системе координат. Вместо описания структуры этой системы координат мы игнорировали её существование. Например, когда мы писали: «Тело движется равномерно…», мы должны были бы писать: «Тело движется равномерно по отношению к выбранной системе координат…». Опыт с вращающейся комнатой научил нас, что результаты эксперимента могут зависеть от выбранной системы координат.

Если две системы координат вращаются относительно друг друга, то законы механики не могут быть справедливыми в обеих системах. Если поверхность воды в бассейне, образующем одну из этих систем координат, горизонтальна, то в другой, вращающейся, системе поверхность воды такого же бассейна примет искривлённую форму, подобную той, которую имеет поверхность кофе в стакане, когда его помешивают ложечкой.

Когда мы формулировали принципиальные законы механики, мы опустили один важный момент. Мы не установили, в какой системе координат они справедливы. Из-за этого вся классическая механика висит в воздухе, так как мы не знаем, к какой системе отсчёта она отнесена. Однако отбросим на минуту эту трудность. Мы сделаем несколько неточное предположение, что законы классической механики справедливы в каждой системе координат, жёстко связанной с Землёй. Это делается для того, чтобы фиксировать систему координат и придать точный смысл нашим утверждениям. Хотя наше утверждение о том, что Земля является подходящей системой отсчёта, и не вполне верно, мы всё же пока примем его.

Мы предполагаем, следовательно, что существует одна система координат, для которой справедливы законы механики. Является ли она единственной? Предположим, что мы имеем такие системы координат, как поезд, пароход или аэроплан, движущиеся относительно Земли. Будут ли законы механики справедливыми и для этих новых систем координат? Мы определённо знаем, что они не всегда справедливы, например в случае поезда, идущего на повороте, или парохода, который попал в шторм, или самолёта, вошедшего в штопор. Начнём с простого примера. Пусть некоторая система координат движется прямолинейно и равномерно относительно нашей «хорошей» системы координат, т. е. относительно системы, в которой законы механики справедливы. Например, пусть это будет идеальный поезд или пароход, плывущий с изумительной плавностью и с неизменной скоростью вдоль прямой. Мы знаем из повседневного опыта, что обе системы будут «хорошими», т. е. физические опыты, произведённые в прямолинейно и равномерно движущемся поезде или пароходе, дадут те же результаты, что и на Земле. Но если поезд останавливается либо резко ускоряется или если море бурно, то происходят странные вещи. В поезде чемоданы выпадают из багажных сеток, на пароходе столы и стулья опрокидываются, а пассажиры страдают морской болезнью. С физической точки зрения это просто означает, что законы механики не могут быть применимы в этих системах координат, что они являются «плохими» системами.

Этот результат может быть выражен с помощью так называемого принципа относительности Галилея:

Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой.

Если две системы координат движутся друг относительно друга неравномерно, то законы механики не могут быть справедливыми в обеих системах одновременно. «Хорошие» системы координат, т. е. те, в которых законы механики справедливы, мы называем инерциальными системами. Вопрос о том, существует ли вообще инерциальная система, ещё не решён. Но если есть одна такая система, то их имеется бесконечное множество. Каждая система, движущаяся прямолинейно и равномерно относительно первоначальной, является тоже инерциальной системой.

Рассмотрим случай двух систем, отправляющихся из некоторого пункта и движущихся прямолинейно и равномерно друг относительно друга с известной скоростью. Тот, кто предпочитает конкретные представления, может думать о корабле или поезде, движущемся относительно Земли. Законы механики могут быть подтверждены экспериментально с одинаковой степенью точности как на Земле, так и на поезде или корабле, движущемся прямолинейно и равномерно. Некоторое затруднение возникает лишь тогда, когда наблюдатели в обеих системах начинают обсуждать результаты наблюдения одного и того же события с точки зрения своей собственной системы координат. Каждому хочется перевести наблюдения другого на свой собственный язык. Опять простой пример: одно и то же движение частицы наблюдается из двух систем координат — с Земли и из поезда, движущегося прямолинейно и равномерно. Обе системы инерциальны. Достаточно ли знать, что наблюдается в одной системе, для того чтобы найти, что наблюдается в другой, если известны относительные скорости и положения обеих систем в некоторый момент времени? Как перейти от одной системы координат к другой? Это весьма существенно знать, так как обе системы эквивалентны и обе одинаково пригодны для описания событий в природе. В действительности совершенно достаточно знать результаты, полученные наблюдателем в одной системе, чтобы предсказать, какие результаты получит наблюдатель в другой.

Рассмотрим проблему более абстрактно, без парохода или поезда. Ради простоты будем исследовать только движение по прямым линиям. У нас имеются твёрдый стержень со шкалой и хорошие часы. Твёрдый стержень для простого случая прямолинейного движения представляет собой систему координат, совершенно так же

как её представлял масштаб у башни в опыте Галилея. Всегда проще и лучше не обращать внимания на башни, стены, улицы и т. п., а мыслить систему координат в виде твёрдого стержня в случае прямолинейного движения или жёсткой конструкции из трёх взаимно перпендикулярных стержней — в случае произвольного движения в пространстве. Допустим, что мы имеем в простейшем случае две системы координат, т. е. два твёрдых стержня; положим один стержень на другой и назовём их соответственно «верхней» и «нижней» системой координат. Предположим, что обе системы координат движутся с определённой скоростью друг относительно друга, так что один стержень скользит вдоль другого. При этом лучше предположить, что оба стержня бесконечны по длине и имеют начальные точки, но не имеют конечных. Для обеих систем достаточно иметь одни часы, так как течение времени в них одинаково. В начальный момент наблюдения начальные точки обоих стержней совпадают. Положение материальной точки в этот момент характеризуется в обеих системах одним и тем же числом. Положение материальной точки совпадает с некоторой точкой на шкале стержня; таким образом, мы получаем число, определяющее положение этой материальной точки. Но если стержни движутся равномерно относительно друг друга, то числа, определяющие положение точки на обоих стержнях, будут через некоторое время, скажем через секунду, различны. Рассмотрим материальную точку, покоящуюся на верхнем стержне (рис. 60). Число, определяющее её положение в верхней системе координат, не изменяется со временем. Но соответствующее число на нижнем стержне будет изменяться. Вместо слов «число, определяющее положение точки» мы будем кратко говорить координата точки. Хотя следующее предложение звучит запутанно, тем не менее из рисунка мы видим, что оно правильно и выражает нечто очень простое. Координата точки в нижней системе координат равна её координате в верхней системе плюс координата начала верхней системы относительно нижней. Весьма важно, что мы всегда можем подсчитать положение частицы в одной системе координат, если знаем её положение в другой системе. Для этого мы должны знать относительное положение рассматриваемых координатных систем в любой момент времени. Хотя всё это звучит по-учёному, на самом деле всё это очень просто и едва ли заслуживает такого детального обсуждения, но это нам будет полезно впоследствии.

Рис. 60

Необходимо отметить различие между определением положения точки и определением времени события. Каждый наблюдатель имеет свой стержень, который определяет его координатную систему, но часы у всех одни и те же. Время есть нечто «абсолютное» и течёт одинаково для всех наблюдателей во всех системах.

Теперь другой пример. Человек прогуливается по палубе большого корабля со скоростью 3 км/ч. Это его скорость относительно корабля или, другими словами, скорость относительно системы координат, жёстко связанной с кораблём. Если скорость корабля относительно берега 30 км/ч и если прямолинейные и равномерные движения корабля и человека имеют одно и то же направление, то скорость прогуливающегося человека по отношению к наблюдателю на берегу будет равна 33 км/ч, а по отношению к кораблю — 3 км/ч. Мы можем формулировать этот факт в более общем виде: скорость движущейся материальной точки относительно нижней системы координат равна скорости относительно верхней системы плюс или минус скорость верхней системы относительно нижней в зависимости от того, имеют ли скорости одинаковые направления или противоположные (рис. 61). Мы всегда, следовательно, можем перевести от одной системы координат к другой не только координаты, но и скорости, если нам известны относительные скорости обеих систем. Положения, или координаты, и скорости являются примерами величин, которые различаются в различных системах координат и которые связаны друг с другом определёнными, в данном случае простыми, законами преобразования.

Рис. 61

Но существуют величины, которые одинаковы в обеих системах и которые не нуждаются ни в каких законах преобразований. Возьмём не одну, а две определённые точки на верхнем стержне и рассмотрим расстояние между ними. Это расстояние является разностью координат обеих точек. Чтобы найти положения двух точек относительно различных систем координат, мы должны использовать законы преобразований. Но при образовании разности двух координат вклады, связанные с переходом в новую систему, компенсируются, как это ясно из рис. 62. Мы должны прибавить, а затем вычесть расстояние между началами обеих систем. Поэтому расстояние между двумя точками инвариантно, т. е. не зависит от выбора систем координат.

Рис. 62

Следующим примером величины, не зависящей от системы координат, является изменение скорости — понятие, хорошо известное нам из механики. Пусть опять материальная точка, движущаяся вдоль прямой, наблюдается в двух системах координат. Изменение её скорости для наблюдателя в каждой системе представляет собой разность между двумя скоростями, и вклад, связанный с равномерным относительным движением обеих систем координат, уничтожается, когда подсчитывается разность. Следовательно, изменение скорости инвариантно, хотя, разумеется, лишь при условии, что относительное движение обеих систем координат равномерно. В противном случае изменение скорости было бы различно для каждой из обеих систем координат; это различие обусловливается изменением скорости относительного движения обоих стержней, представляющих наши координатные системы.

Поделиться:
Популярные книги

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

В поисках Оюты

Лунёва Мария
Оюта
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
В поисках Оюты

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Никчёмная Наследница

Кат Зозо
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Никчёмная Наследница

Надуй щеки! Том 5

Вишневский Сергей Викторович
5. Чеболь за партой
Фантастика:
попаданцы
дорама
7.50
рейтинг книги
Надуй щеки! Том 5

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Черный Маг Императора 15

Герда Александр
15. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
фантастика: прочее
5.00
рейтинг книги
Черный Маг Императора 15

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Неверный. Свободный роман

Лакс Айрин
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Неверный. Свободный роман

Ученье – свет, а богов тьма

Жукова Юлия Борисовна
4. Замуж с осложнениями
Фантастика:
социально-философская фантастика
юмористическая фантастика
космическая фантастика
9.37
рейтинг книги
Ученье – свет, а богов тьма