Чтение онлайн

на главную - закладки

Жанры

Эврика! Радость открытия. Архимед
Шрифт:

Ты уже просил меня написать доказательства для тех проблем, формулировки которых я посылал к Конону; при изложении большей части их приходится пользоваться теоремами, доказательства которых я уже послал тебе, а именно: [...]

Утверждение 3

Третья задача была такова: данный шар рассечь плоскостью так, чтобы поверхности получившихся сегментов находились бы друг к другу в отношении, равном заданному.

ОБ ИЗМЕРЕНИИ КРУГА

Утверждение 1

Всякий круг равен прямоугольному треугольнику, причем радиус круга равен

одной из прилегающих к прямому углу сторон, а периметр — основанию треугольника.

Утверждение 2

Круг к квадрату со стороной, равной своему диаметру, относится, как И к 14.

Утверждение 3

Периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых частей.

О КОНОИДАХ И СФЕРОИДАХ

Утверждение 4

Всякая площадь, ограниченная эллипсом, имеет к кругу с диаметром, равным большему диаметру эллипса, то же самое отношение, что меньший диаметр эллипса к большему или к диаметру круга.

Утверждение 6

Площади, ограниченные эллипсами, находятся друг к другу в таком же отношении, как прямоугольники между диаметрами эллипсов.

Утверждение 19

Если дан сегмент какого-нибудь из коноидов, отсеченный перпендикулярной к оси плоскостью, или же сегмент какого- нибудь из сфероидов, не больший половины этого сфероида и точно так же отсеченный, то можно вписать в него объемную фигуру и описать около него другую, состоящую из имеющих равную высоту цилиндров, и притом так, чтобы описанная фигура была больше вписанной на величину, которая меньше любой наперед заданной величины.

Утверждение 21

[...] Всякий сегмент прямоугольного коноида, отсеченный плоскостью, перпендикулярной к оси, будет в полтора раза больше конуса, имеющего те же самые основания и ось, что и сегмент.

Утверждение 27

Если какую-нибудь сфероидальную фигуру рассечь плоскостью, проходящей через центр и перпендикулярной к оси,

то половина сфероида будет вдвое больше конуса, имеющего то же самое основание и ту же ось, что и сегмент.

О СПИРАЛЯХ

В книгах, которые были посланы через Гераклида, ты имеешь запись большей части тех ранее посланных Конону теорем, доказательства которых ты все время просил меня дать; в этой же книге я посылаю тебе запись некоторой части из оставшихся.

Утверждение 1

Если некоторая точка равномерно движется по какой-нибудь линии и на последней берутся две линии, то взятые линии будут иметь друг к другу то же самое отношение, что и времена, в течение которых точка прошла эти линии.

Утверждение 24

Площадь, заключенная между спиралью, описанной в течение первого оборота и первой из прямых, находящихся на начале вращения, будет третьей частью первого круга.

О РАВНОВЕСИИ ПЛОСКИХ ФИГУР

Книга I

Сделаем следующие допущения.

1. Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести на большей длине.

2.

Если при равновесии тяжестей на каких-нибудь длинах к одной из тяжестей будет что-нибудь прибавлено, то они не будут уравновешиваться, но перевесит та тяжесть, к которой было прибавлено.

3. Точно так же если от одной из тяжестей будет отнято что-нибудь, то они не будут уравновешиваться, но перевесит та тяжесть, от которой не было отнято.

Утверждение 1

Тяжести, уравновешивающиеся на равных длинах, будут тоже равны.

Утверждение 2

Неравные тяжести на равных длинах не уравновешиваются, но перевешивает большая.

Утверждение 6

Соизмеримые величины уравновешиваются на длинах, которые будут обратно пропорциональны тяжестям.

Утверждение 7

И далее, если величины будут несоизмеримыми, то они точно так же уравновесятся на длинах, которые обратно пропорциональны этим величинам.

Утверждение 10

У всякого параллелограмма центром тяжести будет точка, в которой встречаются диаметры (то есть диагонали).

Утверждение 14

У всякого треугольника центром тяжести будет точка, в которой встречаются прямые, проведенные из углов к серединам сторон.

Книга II

Утверждение 8

У всякого сегмента, ограниченного прямой и параболой, центр тяжести делит диаметр сегмента так, что прилежащий к вершине сегмента отрезок в полтора раза больше отрезка у основания.

ИСЧИСЛЕНИЕ ПЕСЧИНОК (ПСАММИТ)

Архимед Гелону

Некоторые люди полагают, государь Гелон, что число песка по величине бесконечно; я говорю не только о песке, который имеется в окрестностях Сиракуз и остальной Сицилии, но и о том, который имеется во всех странах, как населенных, так и не населенных. Есть, однако, и такие, которые не считают его бесконечным, но тем не менее думают, что не существует такого имеющего название числа, которое было бы больше его количества.

[...] Что касается меня, то я постараюсь показать тебе при помощи геометрических доказательств, которые ты можешь понять, что среди чисел, которые получили от нас название и опубликованы в адресованной (мной) Зевксиппу книге, некоторые превосходят не только число песчинок в объеме, равном заполненной, как мы сказали, Земле, но даже в объеме, равном миру. Как ты знаешь, большинство астрономов называют миром шар, центр которого совпадает с центром Земли, а радиус равен прямой, заключающейся между центрами Солнца и Земли. Но Аристарх Самосский [...] предполагает, что неподвижные звезды и Солнце находятся в покое, а Земля обращается вокруг Солнца по окружности, расположенной посредине между Солнцем и неподвижными звездами, а сфера неподвижных звезд имеет тот же центр, что и у Солнца, и так велика, что круг, по которому, как он предположил, обращается Земля, так же относится к расстоянию неподвижных звезд, как центр сферы к ее поверхности. Но хорошо известно, что это невозможно, так как центр сферы не имеет никакой величины, то нельзя предполагать, чтобы он имел какое-нибудь отношение к поверхности сферы...

Поделиться:
Популярные книги

Девочка-лед

Джолос Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Девочка-лед

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Брак по принуждению

Кроу Лана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Брак по принуждению

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Мое ускорение

Иванов Дмитрий
5. Девяностые
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Мое ускорение

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Страж Кодекса. Книга V

Романов Илья Николаевич
5. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга V

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи