Чтение онлайн

на главную - закладки

Жанры

Эврики и эйфории. Об ученых и их открытиях
Шрифт:

Не помогали ни замещающая терапия, ни прочие меры, и я почти готов был согласиться с A.C. Парксом и Р.Т. Хиллом (которые проделывали похожие операции в Англии), что куры после гипофизэктомии просто не способны выжить. Я сдался — решил прервать краткосрочные опыты и свернуть проект, — но вдруг 98 процентов из группы прооперированных животных сумели прожить три недели, а многие из них — и шесть месяцев. Единственное объяснение, которое пришло мне в голову, — это то, что мои хирургические навыки улучшились от частой практики. И тут, когда я был готов затеять долговременный эксперимент, куры вдруг начали умирать снова. Уже неделю спустя я нашел мертвыми обеих птиц, которых прооперировал недавно, и тех, которые прожили несколько месяцев. Это, безусловно, сводило на нет мысль о совершенстве моих хирургических навыков. Я продолжал работать, поскольку знал, что куры способны жить довольно долго при определенных условиях, которые, однако, оставались

для меня загадкой. Тогда же случилась вторая волна удачных опытов с невысокой смертностью. Я тщательно проанализировал свой журнал операций (гипотеза про болезнь, как и многие другие, была изучена и отброшена), но так и не нашел никакого объяснения. Можете себе представить мое отчаяние! Как-то поздней ночью я возвращался домой с вечеринки и ехал по дороге мимо лаборатории. Было два часа ночи, однако в окнах комнаты с животными горел свет. Я решил, что причина этому — какой-нибудь забывчивый студент, поэтому остановил машину и погасил свет сам. Однако несколько ночей спустя я заметил, что свет снова горел всю ночь. При разбирательстве выяснилось, что сменный охранник, которому полагалось каждую полночь проверять, закрыты ли все окна и двери, имел привычку зажигать в этой комнате свет, чтобы ему было проще найти выход (выключатель не додумались разместить возле двери). Как оказалось, оба периода с низкой смертностью пришлись на дежурства этого охранника. Контрольные эксперименты доказали: куры без гипофиза, если держать их в темноте, умирали, а те, которых освещали лампой по два часа каждую ночь, могли жить сколько угодно. Причина была такой: поскольку в темноте птицы не едят, у них развивается гипогликемия (падение уровня сахара в крови), от которой сложно оправиться. Те же, которых подсвечивали, съедали достаточно для того, чтобы предотвратить гипогликемию. С тех пор мы могли продлевать жизнь в гипофизэктомированных птицах сколько угодно.

Так была открыта новая глава в изучении гормонов.

Beveridge W.IB., The Art of Scientific Investigation, (Heinemann, London,i960).

Случайная встреча

После того как Макса Борна, одного из отцов квантовой теории, выдворили с кафедры в Геттингене из-за расовых законов, принятых в 1933-м нацистским правительством, он нашел убежище в Эдинбурге. Путь к спасению ему открыла случайная встреча с Резерфордом.

В 1927-м Борн приехал на международный конгресс в Комо. Один из докладов показался ему скучным, и, дождавшись, когда начнут демонстрировать слайды, Борн воспользовался темнотой и выскользнул из аудитории. Осматривая коридор с намерением убедиться, что его бегства никто не заметил, он увидел человека, который тихо вышел из соседней двери и теперь точно так же оглядывался по сторонам. Это оказался Резерфорд, который, рассмеявшись, сказал Борну: “Вы тоже не можете этого вынести? Пойдемте к озеру!” Прогулка заняла весь остаток дня и положила начало их дружбе. В 1933 году Резерфорд пригласил Борна в Кембридж. Позже он переехал в Эдинбург. Эта история — пример того, как случай решал судьбы многих в те нелегкие времена.

Георгий Гамов рассказывал, что, когда Борн сошел с поезда в Кембридже, ему, уже травмированному немецкой действительностью, бросился в глаза плакат “Вот to be Hanged” (“Рожденный для казни” или “Борн должен быть повешен”). Встречавшим пришлось объяснять Борну, что это всего-навсего афиша спектакля, идущего в местном театре.

Bohr Niels: Memoirs ofWorking Relationship by Stephan Rozental (Christian Ej^iers, Copenhagen,1998).

Своенравная совесть Эддингтона

Первое время теорию относительности Эйнштейна (и общую, и специальную) никак нельзя было назвать общепринятой истиной. Одни ее противники не могли отказаться от представлений об эфире, гипотетической светоносной среде; других пугала мысль, что время — понятие относительное, а скорость света — максимально возможная. Среди самых стойких защитников Эйнштейна в этих непрекра-щающихся спорах был выдающийся английский астроном сэр Артур Эддингтон (1882–1944).

Эддингтон был болезненно стыдлив, но отнюдь не скромен. Его блистательный ученик Субраманьям Чандрасекар вспоминал мельком услышанный диалог Эддингтона с другим астрономом, Людвигом Зильберштейном. Зильберштейн мнил себя большим знатоком теории Эйнштейна и потому сделал Эддингтону комплимент, назвав того одним из трех человек в мире, которые эту теорию понимают. Эддингтон выглядел смущенным, и Зильберштейн дружески посоветовал ему отбросить ложную скромность — на что последовал ответ: “Дело вовсе не в этом. Просто я пытаюсь догадаться, кто же третий”. Помимо всего прочего, Эддингтон был квакером и пацифистом и потому весьма симпатизировал Эйнштейну, который не побоялся всеобщего осуждения, выступая против германского милитаризма с самого

начала Первой мировой войны. В этом, возможно, и стоит искать причину, заставившую Эддингтона доказывать правоту Эйнштейна.

Эйнштейн страстно желал проверить экспериментально те предсказания, которые давала его теория (скорее для того, чтобы убедить скептиков, чем для собственного спокойствия, — сам он ни секунды не сомневался в своей правоте). Одно из предсказаний, допускающих проверку, заключалось в том, что гравитация искривляет свет; самый простой способ в этом убедиться — измерить видимое смещение звезды, достаточно близко подошедшей к солнечному диску. Эти звезды видны во время полных солнечных затмений, и одно из таких затмений ждали 29 мая 1919 года. Эддингтон настоял, чтобы Британия снарядила для наблюдений сразу две экспедиции — одну в бразильский Собраль, а другую (под руководством самого Эддингтона) — на остров Принсипи у западного побережья Африки.

Задача, однако, оказалась сложнее, чем думали. Великий Лаплас в начале XIX века и немецкий астроном Георг фон Зольднер немногим позже независимо предсказали, что свет, рассматриваемый как поток частиц, будет изгибаться гравитационным полем. (Работа Зольднера пылилась в архивах, пока ее не отыскал оппонент Эйнштейна Филипп Ленард, чьи антисемитизм и раздражение росли день за днем, и теперь он использовал Зольднера в борьбе со своим заклятым врагом.) Ньютонова механика предсказывала сдвиг на 0,875", а модель Эйнштейна — на 1,75" Впрочем, сдвиги такого порядка едва выбивались за рамки погрешности измерения самых точных приборов того времени. Могли ли телескопы в Собрале или на Принсипе с достоверностью отличить 0,9" от 1,8"? Эддингтон предполагал, что могли.

Самые благоприятные условия для наблюдений складывались в Бразилии. Лучший из телескопов, привезенных туда, выдавал среднее отклонение в 1,98" (то есть больше, чем требовала теория Эйнштейна), а на телескопе похуже получили о,86", неотличимое от прогнозов Ньютоновой механики. На острове Принсипи в самый неподходящий момент появились облака, и только на двух из шестнадцати пластинок, заснятых во время затмения, имелись изображения звезд — не слишком четкие, зато позволяющие сделать хоть какие-то замеры. По ним выходило, что среднее отклонение составляет 1,61" при стандартной ошибке в 0,3". Результаты представили на внеочередном собрании Королевского общества и Астрономического общества, созванном специально для этого 6 ноября 1919 года. Председательствовал сэр Дж. Дж. Томсон, президент Королевского общества. Королевский астроном сэр Фрэнк Дайсон выступил первым и сообщил вот что:

Астрографические пластинки (то есть фотографические пластинки, экспонированные на специальном телескопе) дают 0,97" для смещение на лимбе, если проводить калибровку по самим пластинкам, а равное — 1,40", если калибровать по контрольным пластинкам (то есть снимкам, сделанным на том же телескопе ночью). Однако лучшие пластинки показывают результат 1,98" — притом что Эйнштейн предсказывал смещение на лимбе в 1,75" На этих пластинках согласие между данными для отдельных звезд было наилучшим из возможных.

После тщательного анализа пластинок я готов заявить: нет сомнений, что предсказания Эйнштейна подтверждаются. Были получены ясные доказательства того, что свет искривляется в соответствии с Эйнштейновыми законами гравитации.

Дайсон ни словом не обмолвился о данных, полученных на Принсипи. Эддингтон, который выступал вслед за ним, результаты с Принсипи не отбраковал, и если забыть про показания менее совершенного телескопа из Собраля, то после усреднения оставшихся величин — избыточно высокой “бразильской” в 1,98" и не слишком точной “африканской” в 1,61" — получалось ровно то, что предсказывал Эйнштейн. Тут выступил профессор Зильберштейн: “Другая попытка проверить теорию относительности, основанная на красном смещении света далеких звезд, провалилась. Так почему стоит верить сомнительным данным по искривлению света, полученным на пределе точности приборов?” — спросил он. У Эддингтона не нашлось убедительного ответа. (С загадкой красного смещения справятся позже: оно возникает из-за сдвига в частоте колебаний излучения, испущенного движущимся объектом. Точным аналогом может служить снижение тона у свистка удаляющегося поезда.)

Вот воспоминания одного из участников экспедиции на Принсипи:

Когда нас познакомили с задачей, имелось три возможных сценария. Первый — никакого отклонения не будет вообще, то есть свет не подчиняется законам гравитации. Второй — случится “отклонение наполовину”: это будет означать, что притяжение все-таки действует на свет, как утверждал еще Ньютон, и ситуацию описывают простые ньютоновские законы. Третий — наконец произойдет “полное отклонение”, которое подтверждает правоту Эйнштейна в противовес Ньютону. Помню, как Дайсон разъяснял все это моему коллеге Коттингэму. “Если мы получим двойное отклонение — что это будет значить?” — спрашивал тот. “Тогда, — сказал Дайсон, — Эддингтон сойдет с ума, и вы отправитесь домой в одиночку”.

Поделиться:
Популярные книги

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Ох уж этот Мин Джин Хо 4

Кронос Александр
4. Мин Джин Хо
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 4

Граф Суворов 7

Шаман Иван
7. Граф Суворов
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Граф Суворов 7

Аргумент барона Бронина 3

Ковальчук Олег Валентинович
3. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 3

Предложение джентльмена

Куин Джулия
3. Бриджертоны
Любовные романы:
исторические любовные романы
8.90
рейтинг книги
Предложение джентльмена

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Неправильный солдат Забабашкин

Арх Максим
1. Неправильный солдат Забабашкин
Фантастика:
попаданцы
альтернативная история
5.62
рейтинг книги
Неправильный солдат Забабашкин

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

На распутье

Кронос Александр
2. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На распутье

Хозяин Теней 4

Петров Максим Николаевич
4. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 4

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Экзо

Катлас Эдуард
2. Экзо
Фантастика:
боевая фантастика
постапокалипсис
8.33
рейтинг книги
Экзо