Эйнштейн. Его жизнь и его Вселенная
Шрифт:
Скептицизм Планка по отношению к атомам и частицам вообще (как к альтернативе волнам и непрерывным полям) обусловлен его консерватизмом. В 1882 году он написал: “Несмотря на огромный успех атомной теории, которым она до сих пор пользовалась, в конце концов она будет сметена, и восторжествует концепция непрерывного строения материи”. По иронии судьбы и Планк, и Эйнштейн войдут в историю как основатели квантовой механики, и оба отступятся от нее, когда станет ясно, что она подрывает принципы прямой причинности и детерминизма, которые оба исповедовали10.
В 1900 году Планк вывел уравнение, частично, как он выразился, с помощью “случайной догадки”, которое описывало зависимость интенсивности
Вначале Планк не имел понятия, какой физический смысл имеет эта математическая константа (если вообще имеет). Но потом у него возникла теория, которая, как он считал, объясняет не природу самого света, а процесс, происходящий при испускании света или его поглощении материальным телом. Он предположил, что любая поверхность, испускающая свет и тепло, такая как, например, стенки модели абсолютно черного тела, содержит “колеблющиеся молекулы” или “гармонические осцилляторы”, похожие на маленькие колеблющиеся пружины11. Эти гармонические осцилляторы могут поглощать или испускать энергию только в форме дискретных пакетов или сгустков энергии. Энергия этих пакетов может принимать только фиксированные значения, определяемые постоянной Планка, и не может ни составлять часть от этих значений, ни принимать непрерывные значения.
Планк считал, что его константа – просто математический кунштюк, который объясняет процесс излучения или поглощения, а к фундаментальной природе света отношения не имеет. Тем не менее, произнося доклад на заседании Берлинского физического общества в декабре 1900 года, он сделал важное утверждение: “Мы считаем – и это является самой существенной частью всех расчетов, – что поток энергии состоит из совершенно определенного количества одинаковых конечных пакетов”12.
Эйнштейн быстро понял, что квантовая теория подрывает основы классической физики. “Все это мне стало ясно вскоре после выхода в свет фундаментальной работы Планка, – писал он позже, – все мои попытки согласовать теоретические основы физики с этими открытиями полностью провалились. Было похоже, что из-под нас вытащили фундамент, а нового твердого основания что-то нигде не было видно”13.
Вдобавок к загадке смысла константы Планка возникла еще одна требующая объяснения проблема, связанная с излучением. Проблема называлась фотоэлектрическим эффектом – испусканием электронов из металла при падении света на металлическую поверхность. Падающий свет расшатывает электроны и вырывает их из металла. В письме, которое Эйнштейн написал Марич (между прочим, сразу после того, как узнал о ее беременности) в мае 1901 года, он выражал восторг по поводу “красивой работы” Филиппа Ленарда на эту тему.
Ленард в своих экспериментах обнаружил неожиданное свойство: когда он увеличивал частоту света, двигаясь от инфракрасных (тепловых) длин волн к красным и дальше к фиолетовым и ультрафиолетовым, энергия испускаемых электронов увеличивалась. Потом он стал увеличивать интенсивность, используя свет электрической дуги с графитовыми электродами, в которой яркость света могла меняться в 1 тысячу раз. Поскольку чем ярче свет, то есть чем выше его интенсивность, тем больше поток энергии, логично было бы предположить, что выбитые электроны будут обладать большей энергией и получат большее ускорение. Но в эксперименте этого не наблюдалось.
Эйнштейн размышлял над работами Планка и Ленарда четыре года. В его итоговой работе, относящейся к 1904 году, – “К общей молекулярной теории теплоты” [18] – содержался расчет флуктуаций средней энергии системы молекул. Результаты своего расчета он сравнил с данными эксперимента, в котором исследовался объем, заполненный излучением черного тела, и увидел, что теоретические и экспериментальные результаты согласуются. Последняя фраза статьи звучала так: “Я думаю, что согласие… невозможно приписать случайности”14. Сразу после завершения этой работы 1904 года он написал своему другу Конраду Габихту: “Теперь я нашел самое простое соотношение между величиной элементарных квантов материи и длиной волны излучения”. Таким образом, похоже, Эйнштейн уже был готов к построению квантовой теории, то есть к тому, чтобы заявить, что поле излучения состоит из квантов15.
18
Эйнштейн А. К общей молекулярной теории теплоты // Собр. науч. трудов: в 4 т. Т. 3.
В статье о световых квантах, вышедшей годом позже, в 1905 году, он как раз это и сделал – взял математическую константу, которую ввел Планк, соотнес с результатами Ленарда по фотоэлектрическому эффекту и стал рассматривать свет так, как будто он не является непрерывной волной, а действительно состоит из точечных частиц, названных им квантами света.
Эйнштейн начал свою статью с описания огромной разницы между теориями, основанными на концепции частиц (например, кинетической теорией газов), и теориями, использующими непрерывные функции (например, для электромагнитного поля в волновой теории света). “Существует глубинное формальное различие между теориями, которые физики построили для газов и других тел с массой, и теорией Максвелла, описывающей электромагнитные процессы в так называемом пустом пространстве, – пишет он. – В то время как мы считаем, что состояние тела полностью определяется положением и скоростями очень большого, но конечного числа атомов и электронов, для того, чтобы описать электромагнитное состояние данного объема, мы используем пространственно-непрерывные функции”16.
Прежде чем дать обоснование своей корпускулярной теории света, он подчеркнул, что не обязательно отказываться от волновой теории, которая будет оставаться полезной. “Волновая теория света, которая имеет дело с непрерывными пространственными функциями, хорошо работает в чисто оптических явлениях и, возможно, никогда не будет заменена другой теорией”.
Его способ совмещения волновой и корпускулярной теорий состоял в том, чтобы “эвристически” считать, что наше наблюдение волн включает статистическое усреднение положений бесчисленного количества частиц. “Нужно иметь в виду, – говорил он, – что при оптических измерениях наблюдаются усредненные по времени, а не мгновенные величины”.
Далее в тексте статьи следовала, быть может, самая революционная фраза из всех написанных Эйнштейном. В ней была сформулирована мысль о том, что свет состоит из дискретных частиц или энергетических пакетов: “Согласно предположению, которое будет здесь рассмотрено, если луч света идет от точечного источника, энергия не распределяется в расширяющемся объеме непрерывно, а состоит из конечного числа энергетических квантов, локализованных в точках пространства, причем излучаться и поглощаться они могут только неделимыми порциями”.