Чтение онлайн

на главную - закладки

Жанры

Фармакологическая помощь спортсмену: коррекция факторов, лимитирующих спортивный результат
Шрифт:

Третья и, вероятно, важнейшая система (особенно влияющая на работоспособность и продолжительность спортивной карьеры) – энергопродуцирующая. С нарастанием объема и интенсивности физической нагрузки, с увеличением спортивного стажа и возраста, энергетический запрос со стороны клетки непрерывно растет, а энергопродуцирующие ее функции снижаются. Со временем данная функция начинает оказывать решающее влияние на судьбу каждой клетки и всего организма в целом. Работа клеток в неблагоприятных условиях, особенно при кислородной недостаточности тканей, в условиях, осложненных хроническим воспалением, вызывает значительный выброс активных форм

кислорода и несет основную ответственность за повреждение и гибель энергопроду-цирующих станций – митохондрий. Адекватный тренировочный процесс, сбалансированное питание, фармакологическая поддержка способствуют более эффективной доставке в ткани кислорода и питания, повышают энергетику клетки и, как следствие, ускоряют процессы репарации.

Все клеточные системы взаимосвязаны и образуют единую клеточную регуляторную систему циклического типа.

Знание принципов ее работы позволяет выработать определенные правила проведения каждой тренировки, годичного тренировочного цикла, системы восстановительных мероприятий, которые: во-первых, будут способствовать сохранению физико-химических параметров клеточных мембран (при исключении воздействия чрезмерных и продолжительных стрессов); во-вторых, обеспечат необходимый уровень антиоксидантов и, наконец, сохранят энер-гопродуцирующие функции клеток (при физических нагрузках, соответствующих физиологическим возможностям).

При развитии патологии или старении организма происходит последовательное повреждение клеточных структур:

истощение антиоксидантной системы > повреждение биомембран > появление энергодефицитного состояния

Данную последовательность целесообразно учитывать при разработке схем терапевтической коррекции.

Медицинский аспект повышения работоспособности состоит в разработке и применении таких средств, которые, не препятствуя восприятию сигналов утомления, отдаляли бы наступление утомления за счет расширения биохимических и функциональных резервов организма, но не за счет их истощения (Бобков Ю.Г.).

III

КОРРЕКЦИЯ ФАКТОРОВ, ОГРАНИЧИВАЮЩИХ РАБОТОСПОСОБНОСТЬ СПОРТСМЕНА

1. Энергообеспечение мышц

Энергетическое обеспечение клетки включает три составляющие: химическую в виде набора макроэргов, локализованных в цитоплазме; электрическую (мембранный потенциал) и осмотическую (неравномерное распределение ионов по разным сторонам клеточной мембраны). Все три составляющие равнозначны и взаимосвязаны (рис. 1).

Мышечные клетки располагают двумя энергопреобразующими системами: дыхательной цепью и гликолизом. Регуляция работы каждой из систем и их взаимодействие в значительной степени реализуются на молекулярном уровне. Обе системы полиферментные, т е. образование макроэргов – результат различных последовательных реакций.

В силу конструктивных особенностей мышечной ткани глико-литический процесс может стать оптимальным только через 40-50 с после начала мышечных сокращений. Дыхательная цепь еще более инертна, и она по энергопроизводительности может сравниваться с гликолизом только через 70 с после начала работы.

Для начала работы (особенно в спринте) требуется огромная, быстро реализуемая энергия. Во время бега спринтеры расходуют свои внутренние резервы в виде макроэргических соединений. Первое «резервное топливо» – молекулы АТФ. Депонированная в АТФ энергия может быть быстро преобразована в мышечную.

Имеющиеся запасы АТФ в тканях невелики, их хватает

спринтеру лишь на 2 с забега. Затем начинает отдавать энергию другое энергетическое депо, находящееся в мышечных клетках – креатинфосфат. Его запасов хватает еще на 10-12 с. Поэтому на победу в спринте могут рассчитывать лишь те спортсмены, организм которых способен накапливать значительный резерв высокоэнергетических веществ – макроэргов (фосфагенов).

Универсальный источник энергии в клетке (в том числе и мышечной) – свободная энергия макроэргической фосфатной связи аденозинтрифосфата (АТФ), освобождаемая при гидролизе (распаде) АТФ до АДФ [1] и АМФ [2] и неорганического фосфора. Если концентрация АТФ велика, то ингибируются ферменты, участвующие в его синтезе. При снижении концентрации АТФ и увеличении концентрации АДФ активируется дыхательная цепь, а при росте концентрации АМФ – гликолиз.

1

АДФ – аденозиндифосфат.

2

АМФ – аденозинмонофосфат.

При систематически повышенном энергетическом запросе включается более высокий, клеточный уровень регуляции энерго-преобразующей системы, приводящий к индукции (а при снижении энергетического запроса – к репрессии) синтеза новых ферментов для энергетических цепей. Индукция или репрессия ферментов становятся в этом случае наиболее простым и экономичным способом адаптации клеток к новым условиям (табл. 1).

Поддержание энергетического гомеостаза в клетке осуществляется в автоматическом режиме при сохранении постоянства внутриклеточной среды (табл. 2).

Таблица 1

Время, необходимое для нормализации биохимических процессов

(Волков Н. И. с соавт., 2000)

Примечание. В таблице представлена динамика восстановительных процессов после значительной физической нагрузки. Информация об устранении молочной кислоты представлена автором.

Таблица 2

Механизмы энергообеспечения работы, их пульсовые и биохимические значения

Окончание табл. 2

Примечание. Данные таблицы: Фарфель B.C. (1945), Петрович Г.П. (1990), Американская Ассоциация плавания (1998), Кулиненков О.С. (2005).

Коррекция энергообеспечения

Снижение энергообеспечения мышц возможно вследствие недостатка в организме макроэргов, фосфо-креатина, глюкозы, гликогена, липидов, аминокислот; недостаточности вовлечения в процесс энергообеспечения липидов, протеинов; неэффективности динамики образования АТФ (рис. 2). Результат – происходит уменьшение мощности работы из-за снижения сократимости мышц.

Поделиться:
Популярные книги

Ветер перемен

Ланцов Михаил Алексеевич
5. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ветер перемен

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

Тринадцатый XI

NikL
11. Видящий смерть
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Тринадцатый XI

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

Телохранитель Генсека. Том 4

Алмазный Петр
4. Медведев
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Телохранитель Генсека. Том 4

На границе империй. Том 10. Часть 9

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 9

Законы Рода. Том 11

Андрей Мельник
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Восход. Солнцев. Книга IV

Скабер Артемий
4. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IV

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников