ФАРМАКОЛОГИЯ ВЗАИМОДЕЙСТВИЯ РЕГУЛЯТОРНЫХ ПЕПТИДНЫХ СИСТЕМ ГОЛОВНОГО МОЗГА В МЕХАНИЗМАХ ПОДКРЕПЛЕНИЯ
Шрифт:
В процессе употребления наркотических средств учавствуют медиальная префронтальная кора, базальные отделы переднего мозга, центральное ядро миндалины, латеральный гипоталамус и вентральная область покрышки. Это реализуется при включении дофаминовой, серотониновой систем, системы опиоидных пептидов, -аминомаслянной кислоты (ГАМК) (Koob G.F., 1992; Koob G.F., 1996; Koob G.F., LeMoal M., 1997; Nestler E.J., 2005). Последнее подтверждается опытами с самовведением наркотических средств и повышением внеклеточной концентрации дофамина, измеренной в свободном поведении в методе микродиализа (DiChiara, Getal, 2004). При этом наблюдается значительно меньшее увеличение концентрации этанола, никотина и опиоидов при самовведения (Doyon W., Metal, 2003; Weiss F., 1992). При повреждения мезолимбической дофаминергической системы показатели самовведения опиоидов и этанола не изменяются (Dworkin S., Ietal, 1998; Myers R. D., 1990; Pettit H.O., et al, 1984; Rassnick., Setal, 1993). Серотонинергическая система мозга тоже принимает участие
Мозговым субстратом синдрома отмены служат компоненты системы расширенной миндалины и стресс-зависимые системы ГМ, включая кортикотропинрилизинг гормон (КРГ) и норадреналин. Изменения, сопровождающиеся снижением функции награды при синдроме отмены, в дальнейшем сохраняются в форме состояния успокоения, формирующее высокий уровень мотивационного возбуждения для повторного употребления наркотиков (Koob G.F., LeMoal M., 2005).
В исследованиях (Шабанов П.Д., Лебедев А.А., 2007; Шабанов П.Д.и др., 2002; Shabanov P.D., 2008) показана возможность прямого управляющего действия со стороны центрального ядра миндалины на гипоталамус посредством механизмов, вовлекающих КРГ и дофамин. Этот механизм имеет важное значение для реализации подкрепляющих эффектов опиатов и опиоидов (Шабанов П.Д.и др., 2006). По-видимому, этим двум структурам расширенной миндалины – центральному ядру миндалины и ядрам ложа конечной полоски – и принадлежит координирующая роль в формировании эмоциональных стресс-реакций, опосредуемых как медиаторами, так и нейропептидами (КРГ, в частности).
Центральная часть расширенной миндалины получает массивную афферентацию от лимбических структур, базолатеральной миндалины и гиппокампа, и отправляет эфференты в вентральный паллидум и латеральный гипоталамус для контроля над лимбическими структурами и экстрапирамидной двигательной системой (Alheid G.F., et al., 1995). Для обеспечения нейрохимического звена системы «антинаграды» может служить целый ряд медиаторных систем и отражать центральные механизмы поддержания гедонистической основы гомеостаза [Koob G.F., LeMoal M., 1997). При этом в качестве точки приложения медиаторов системы «антинаграды» служит кортикотропин-релизинг фактор (КРГ), норадреналин и динорфин. КРГ, норадреналин и динорфин в головном мозге осуществляют свои функции при длительном применении наркотического средства, формируя отвращение или состояния подобные стрессуво время синдрома отмены (Koob G.F., 2008; Koob G.F., LeMoal M., 2008b).
Антагонисты рецепторов КРГ уменьшают поведение беспокойства (Rassnick S., et al., 1993a] и снижают самовведение этанола у крыс с алкоголизацией (Funk C.K., et al., 2006). При системном введении антагонистов КРГ1 наблюдалась направленность действия на поведение и на самовведение этанола во время его острой отмены и длительного воздержания (Koob G.F., 2008). Результаты говорят о важной роли КРГ системы расширенной миндалины в формировании повышения реакции самовведения у животных с выраженной зависимостью. Подобные результаты наблюдались при увеличении реакции самовведения, связанной с неограниченным доступом к героину (Greenwell T.N., et al., 2009), кокаину (Specio S.E. et al., 2008), и никотину (George O., et al., 2007).
Ещё один убедительный аргумент в пользу решающей роли системы расширенной миндалины в эмоциональных состояниях связан с данными (LeDoux J.E., et al., 1988), в которых наблюдалась конвергенция сенсорных импульсов негативной эмоциональной природы в центральное ядро миндалины. Эти результаты показали, что звуковые стимулы от слуховой коры и болевые воздействия от соматосенсорной коры конвергируют в базо-латеральной миндалине, проецирующей потоки импульсов к центральному ядру миндалины, для организации вегетативных и поведенческих реакций, вызванных состоянием страха (LeDoux J.E., et al., 1988). Согласно гипотезе Д. Прайса центральное ядро миндалины является ключевой структурой, учавствующей в формировании эмоциональной боли. (Price D.D., 2002).
1.3.Орексин и орексиновые рецепторы
Нейропептиды головного мозга орексин А и орексин В формируются в гипоталамусе и действуют по типу нейромедиаторов на два связанных с G-белком рецептора, получивших название рецепторов орексина 1-го и 2-го типов (OX1R и OX2R) (Sakurai T., еt al., 1998).
Орексин А и В образованы из общего полипептидного предшественника, препроорексина, в ходе обычного протеолитического процессинга вероятно конвертазами прогормона (L. DeLecea., et al., 1998).
Распределение OX1R и OX2R частично совпадает, но имеются и различия, что, по-видимому, говорит об их различных функциях. OX1R экспрессируется
Орексиновые нейроны расположены преимущественно в перифорникальной области, и в задней (латеральной) области гипоталамуса головного мозга крыс (Peyron C., et al., 1998; Date Y., et al., 1999; Nambu T., et al., 1999), аналогичная конфигурация нейронов обнаружена и в мозге человека (Elias C. F., et al., 1998). Это говорит о том, что активность орексиновых нейронов влияет на обширные области головного мозга. Значительное число орексиновых нейронов экспрессирует везикулярные глутаматные транспортеры, предполагая, что многие орексиновые нейроны являются тоже глутаматергическими (Rosin D. L., et al., 2003; Torrealba F., et al., 2003). В противоположность этому орексиновые нейроны не экспрессируют GAD-67 мРНК, говоря о том, что орексиновые нейроны не ГАМК-эргические (Rosin D. L., et al., 2003). Орексиновые нейроны активируются из латерального парабрахеального ядра, вентролатерального преоптического ядра, медиальной и латеральной преоптической областей, основания переднего мозга, заднего и дорсомедиального гипоталамуса, вентральной области покрышки и медиального ядра шва. Большинство восходящих нейронов идентифицированы в эмоциогенных структурах мозга, включая инфралимбическую кору, миндалину, прилежащее ядро, латеральное ядро перегородки и ядро ложа конечной полоски. Орексиновые нейроны иннервируются структурами мозга, обеспечивающими поддержание гомеостаза, включая нейропептид Y, альфа-меланин стимулирующий гормон (Broberger C., et al., 1998; Elias C . F., et al., 1998).
Ядра гипоталамуса иннервируют орексиновые нейроны в медиальной и перифорникальной области, но часть проекций от ствола головного мозга проецируются к латеральной области гипоталамуса (Yoshida K., et al., 2006). Эти структуры мозга направляют сигналы к орексиновым нейронам и регулируют их активность секрецией нейромодуляторов. Например, норадреналин и серотонин (5HT) вызывают гиперполяризацию на орексиновых нейронах через активацию G- белков, регулирующих состояние K+ каналов через альфа-2 адренорецепторы и 5HT1A- рецепторы (Yamanaka A., et al., 2003b, 2006; Muraki Y., et al., 2004). Холинергический агонист карбахол активирует 27% и ингибирует 6% орексиновых нейронов посредством М3-мускариновых рецепторов (Yamanaka A., et al., 2003; Sakurai T., et al., 2005). Серотониновые и норадреналиновые нейроны осуществляют тормозную обратную связь с орексиновыми нейронами. Данный механизм обратной связи может стабилизировать активность как орексиновых, так и моноаминергических нейронов. Кроме того, хоть орексиновые нейроны и не экспрессируют дофаминергические рецепторы, все же дофамин ингибирует орексиновые нейроны, действуя на альфа- 2 – адренорецепторы (Yamanaka A., et al., 2003b, 2006). Было также доказано, что короткий период тотального прерывания сна изменяет действие норадреналина на орексиновые нейроны у крыс (Grivel J., et al., 2005), хотя это не наблюдалось у мышей (Yamanaka A., et al.,2006).
Агонисты NMDA рецепторов возбуждали орексиновые нейроны, тогда как антагонисты NMDA рецепторов cнижали их активность (Li Y., et al., 2002; Yamanaka A., et al., 2003b). Данные результаты говорят о том, что орексиновые нейроны тонически активируются глутаматергическими нейронами. А GABA-ергические сигналы к орексиновым нейронам выраженно ингибируют активность орексиновых нейронов (Xie X., et al., 2006; Matsuki T., et al., 2009).
При работе с трансгенными мышами, у которых орексиновые нейроны экспрессируют внутриклеточный кальциевый индикатор (Yc2.1), обнаружен ряд биологически активных веществ, влияющих на активность орексиновых нейронов: холецистокинин, нейротензин, окситоцин и вазопрессин (оказывают возбуждаюшее действие) (Тsujino N., et al., 2005; Тsunematsu T., et al., 2008). При этом, ГАМК, глюкоза, серотонин, норадреналин и лептин оказывают тормозное действие на орексиновые нейроны. Доказано, что аденозин ингибирует орексиновые нейроны через OX1R (Liu Z.W., Gao X.B., 2007).