Чтение онлайн

на главную - закладки

Жанры

Феномен науки. Кибернетический подход к эволюции

Фёдорович Турчин Валентин

Шрифт:

6.7. Логические связки

Широко употребительных логических связок пять. Это отрицание (изображается знаком ¬), конъюнкция (знак ), дизъюнкция (знак ), импликация (знак ) и эквивалентность (знак ).

Высказывание ¬A (читается «не A») означает, что высказывание A ложно. Иначе говоря, ¬A истинно тогда, когда A ложно, и ложно тогда, когда A истинно.

Высказывание A B (читается «A

и B») означает утверждение, что верно и A, и B. Оно верно только в том случае, если верны оба высказывания A и B.

Высказывание A BA или B») верно, если верно хотя бы одно из высказываний A и B.

Высказывание A B читается «A влечет B» или «если A, то B». Оно неверно, если A истинно, B ложно, и верно во всех остальных случаях.

Наконец, высказывание A B верно в том случае, если высказывания A и B либо оба истинны, либо оба ложны.

Для обозначения структуры связей пользуются скобками подобно тому, как это делается в алгебре для обозначения порядка выполнения арифметических действий. Так, например, высказывание ¬A B означает «A неверно, а B верно», а высказывание ¬(A B) — «неверно, что A и B оба верны». И так же, как в алгебре, для уменьшения числа скобок устанавливается порядок старшинства связок по силе связи. Выше мы перечислили связки в порядке ослабления связи. Например, конъюнкция связывает сильнее, чем импликация, поэтому высказывание A B C понимается как A (B C), но не как (A B) C. Это соответствует тому, что в алгебре a + b x c означает a + (b x c), но не (a + b) x c.

Приведем несколько примеров составных высказываний.

Известная скороговорка утверждает: «цапля чахла, цапля сохла, цапля сдохла». Это высказывание можно записать в виде: «цапля чахла» «цапля сохла» «цапля сдохла».

Соотношение 0 < Z < 1 есть конъюнкция «Z > 0» «Z < 1», a соотношение |Z| > 1 — дизъюнкция «Z > 1»

«Z < -1». Определение логической связки данное выше, можно записать так:

[(A B) (A B) (¬A ¬B)] [(A B) (¬A ¬B) (A B)]

Предоставляем читателю перевести на обычный язык следующее высказывание:

«Свет включен» «Лампочка не горит» «Нет электричества» «Перегорели пробки» «Перегорела лампочка».

Если считать, что высказывания могут быть только истинными или ложными и, сверх этого, о высказывании ничего сказать нельзя, то перечисленных связок достаточно, чтобы выразить все мыслимые конструкции из высказываний. Достаточно даже двух связок, например отрицания и конъюнкции или отрицания и дизъюнкции. Такая ситуация имеет место, в частности, в отношении утверждений математики. Поэтому в математической логике других связок не используется.

Однако естественный язык отражает большее разнообразие в оценке высказываний, чем просто деление их на истинные и ложные. Например, высказывание можно рассматривать как бессмысленное или как недостоверное, хотя и возможное («в этом лесу, наверное, есть волки»). Этим вопросам посвящены специальные разделы логики, в которых находятся другие связки. Большого значения для современной науки эти разделы (в отличие от классической математической логики) не имеют, и мы их касаться не будем.

6.8. Предикаты

Конструкция, сопоставляющая нескольким объектам высказывание, называется предикатом. Предикаты делятся на одноместные, двухместные, трехместные и т.д. в соответствии с числом объектов, которого они требуют. Для записи их используют функциональные обозначения. Предикат можно записать в виде функции с незаполненными местами для аргументов, например

P, L( , ), I( , , )

или же в виде

P(x), L(z, y), I(x, y, z)

оговорив, что x, y, z — предметные переменные, т. е. символы, которые в конечном счете должны быть заменены на объекты, но какие — пока неизвестно. Впрочем, вторая форма изображает, строго говоря, уже не предикат, а высказывание, содержащее предметные переменные. Вместо больших букв мы будем также использовать словосочетания в кавычках, например,

«красный»(x), «между»(x,у, z)

и специальные математические знаки, например,

<(х, у).

Одноместный предикат выражает свойство объекта, предикат более чем с одним аргументом — отношение между объектами. Если места для аргументов в предикате заполнены, то мы имеем дело с высказыванием, утверждающим наличие данного свойства или отношения. Высказывание

Поделиться:
Популярные книги

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Имя нам Легион. Том 10

Дорничев Дмитрий
10. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 10

Убивать чтобы жить 8

Бор Жорж
8. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 8

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Слово дракона, или Поймать невесту

Гаврилова Анна Сергеевна
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Слово дракона, или Поймать невесту

Отверженный VIII: Шапка Мономаха

Опсокополос Алексис
8. Отверженный
Фантастика:
городское фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Отверженный VIII: Шапка Мономаха

Идеальный мир для Лекаря 27

Сапфир Олег
27. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 27

Бестужев. Служба Государевой Безопасности. Книга четвертая

Измайлов Сергей
4. Граф Бестужев
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга четвертая

Пятнадцать ножевых 3

Вязовский Алексей
3. 15 ножевых
Фантастика:
попаданцы
альтернативная история
7.71
рейтинг книги
Пятнадцать ножевых 3

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Право на эшафот

Вонсович Бронислава Антоновна
1. Герцогиня в бегах
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на эшафот

Кодекс Крови. Книга ХIII

Борзых М.
13. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIII

Бестужев. Служба Государевой Безопасности. Книга 5

Измайлов Сергей
5. Граф Бестужев
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга 5