Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:
§ 6. Ядерные силы
Мы заключим эту главу кратким обзором единственных ныне известных сил, отличающихся от перечисленных, – ядерных сил. Эти силы действуют внутри ядра атома, и, хотя их много изучали, никто ни разу еще не смог рассчитать силу, действующую между двумя ядрами; и фактически закон ядерных сил сейчас не известен. Эти силы имеют крайне незначительную протяженность действия – они действуют только на размерах ядра около 10–13 см. Поскольку частицы столь малы, а расстояния так коротки, нам нечего надеяться на законы Ньютона – здесь действуют только законы квантовой механики. Анализируя ядра, мы больше не говорим о силах; мы заменяем понятие силы понятием энергии взаимодействия двух частиц (позже об этом будет сказано подробнее). Любые формулы, которые можно написать для ядерных сил, представляют довольно грубые приближения, в которых опущены многие детали
Глава 13
РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (I)
§ 1. Работа падающего тела
§ 2. Работа, выполняемая тяжестью
§ 3, Сложение энергий
§ 4. Поле тяготения больших тел
§ 1. Работа падающего тела
В гл. 4 мы разобрали вопрос о сохранении энергии. При этом законами Ньютона мы не пользовались. Интересно теперь посмотреть, как возникает сохранение энергии из–за того, что действуют эти законы. Для ясности мы начнем с самых простых примеров и постепенно будем их усложнять.
Простейший пример сохранения энергии – это тело, падающее вниз, т. е. тело, движущееся только в вертикальном направлении. Если оно меняет свою высоту под влиянием только тяжести, то из–за движения оно обладает кинетической энергией Т (или к. э.) Кроме того, у него есть потенциальная энергия mgh (сокращенно U, или п. э.). Их сумма постоянна:
или
Т+U=const. (13.1)
Мы хотим показать, что это утверждение правильно. Что значит доказать его правильность? Второй закон Ньютона говорит, как движется тело, как со временем изменяется его скорость (а именно, что в падении она растет пропорционально времени, а высота падения меняется как квадрат времени). Если поэтому отмерять высоту от нулевой точки (где тело покоилось), то не будет ничего странного в том, что она окажется равной квадрату скорости, умноженному на какие–то постоянные. Однако все же рассмотрим это повнимательней.
Попробуем вычислить прямо из второго закона Ньютона, как обязана меняться кинетическая энергия; мы продифференцируем кинетическую энергию по времени и потом применим закон Ньютона. Дифференцируя 1/2mv2 по времени, получаем
потому что m считается постоянной. Но по второму закону Ньютона m(dv/dt)=F, так что
dT/dt=Fv. (13.3)
В общем случае получается F•v, но для нашего одномерного случая лучше оставить просто произведение силы на скорость.
Сила в нашем простом примере постоянна, равна –mg и направлена вниз (знак минус именно это и показывает), а скорость есть степень изменения положения по вертикали (высоты h) со временем. Поэтому степень изменения кинетической энергии равна –mg(dh/dt). Взгляните: что за чудо! Перед нами снова чья–то скорость изменения – скорость изменения со временем величины mgh! Поэтому выходит, что с течением времени изменения в кинетической энергии и в величине mgh остаются равными и противоположными, так что их сумма остается неизменной. Что и требовалось доказать.
Мы
Скорость–это скорость изменения расстояния вдоль кривой ds/dt, а касательная сила Ft теперь оказывается меньше mg в отношении, равном отношению расстояния ds вдоль пути к вертикальному расстоянию dh. Иными словами,
так что
(ds выпадает). И опять, как прежде, мы получили величину – mg(dh/dt), равную скорости изменения mgh.
Чтобы точно уяснить себе, как вообще соблюдается сохранение энергии в механике, рассмотрим сейчас некоторые полезные понятия.
Во–первых, рассмотрим скорость изменения кинетической энергий в общем трехмерном случае. Кинетическая энергия, когда движение имеет три измерения, равна
T =1/2m (v 2 x +v 2 y +v 2 z ).
Дифференцируя ее по времени, получаем три устрашающих члена:
Но ведь m(dvx/dt) – это сила Fx, действующая на тело в направлении х. Значит, в правой части формулы (13.4) стоит Fxvx+Fyvy+Fzvz. Призвав на помощь векторный анализ, вспоминаем, что это F•v. Итак,