Физические эффекты и явления
Шрифт:
А.с. 163 508: Универсальный гальваномагнитный датчик, содержащий плоские токовые и холловские электроды точечность контакта которых обеспечивает перемычки в теле датчика, отличающийся тем, что с целью уменьшения эффекта закорачивания холловского напряжения токовыми электродами использования одного и того же единого гальваномагнитного датчика как датчика э.д.с. Холла или как датчика магнитосопротивления, или как гиратора, токовые электроды расположены вдоль эквипотенциальных линий поля Холла или под острым углом к ним, например по ребрам плоского датчика, а для перехода из одного используемого эффекта к другому применено коммутирующее устройство
10.1.4. Термомагнитные явления - совокупность явлений, возникающих под действием магнитного поля в проводниках, внутри которых имеется тепловой поток.
при поперечном замагничивании проводника возникает следующие термомагнитные явления:
10.2.1. В направлении перпендикулярном градиенту температур и направлению магнитного поля возникает градиент температур (эффект Риге-Ледюка).
10.2.3. При продольном намагничивании образца изменяется сопротивление, термо - э.д.с., теплопроводность (появляется тепловой поток).
А.с. 187 859: Устройство для измерения э.д.с. поперечного эффекта Кернота-Эттингсгаузена в полупроводниковых материалах, содержащее нагреватель, холодильник и термопары-зонды, отличающиеся тем, что с целью исключения неизотермической части э.д. с. Нернота-Эттингсгаузена, уменьшения тепловых потерь и исключения цикуляционных токов на контакте полупроводникизмерительные зонды, термопары-зонды подведены к поверхности исследуемого образца через массивные металлические блоки холодильника инагревателя, находяшиеся в хорошем тепловом контакте с образцом, электрически изолированные от последнего.
В этом авторском свидетельстве физический эффект не применен для решения задач. Оно просто демонстрирует, что использование эффектов требует как их знания, так и решения сложных электрических задач.
10.2.4. Электронный фототермомагнитный эффект - появление э.д.с. в однородном проводнике (полупроводнике или металле), помещенном в магнитном поле, обусловленное поглощением электромагнитного получения свободными носителями заряда. Магнитное поле должно быть перпендикулярно потоку излучения. Этот эффект применяется в высокочувствительных 10 в минус тринадцатой степени вт, сек1/2 приемниках длинноволнового инфракрасного излучения. Постоянная времени эффекта - 10 в минус седьмой степени сек.
Л И Т Е Р А Т У Р А
к 10.1 "Радио", N'9, 1964, стр.53, А.с.249473, 255996; к 10.2 А.с.476463.
11.ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ.
11.1 В обычных услх любой газ,буть то воздух или пары серебра, является изолятором. Для того,чтобы под действием электрического полявозник ток, требуется каким-то способом ионизовать молекулы газа. Внешние проявления и характеристики разрядов в газе чрезвычайно разнообразны,что объясняется широким диапазоном параметров и элементарных процессов,определяющих прохождения тока через газ.Кпервым относятся состав и давление газа, геометрическая конфигурация разрядного пространства, частота внешнего электрического поля,сила тока и т.п.,ко вторым - ионизация и возбуждение атомов и молекул газа,рекомендация удары второго рода,упругое рассеяние носителей заряда,различные виды эмиссии электронов. Такое многообразие управляемых факторов создает предпосылки для весьма широкого пименения газовых разрядов.
11.1.1.П о т е н ц и а л о м и о н и з а ц и и называется энергия, необходимая для отрыва электрона от атома или иона. Для нейтронных невозбужденных атомов величина этой энергии изменяется от 4 до 24 (Не) электрон-вольт.
11.1.2. Ф о т о и о н и з а ц и я а т о м о в. Атомы могут понизироваться при поглащении квантов света, энергия которых равна потенциалу ионизации атома или превосходит ее.
11.1.3. П о в е р х н о с т н а я и о н и з а ц и я . Адсорбированный атом может покинуть нагретую поверхность как в атомном так и в ионизованном состоянии. Для ионизации необходимо, чтобы работа выхода поверхности была больше энергии ионизации уровня валентного электрона адсорбированного атома (щелочные металлы на вольфраме и платине)
11.1.4.Процессы ионизации используются не только для возбуждения различных видов газовых разрядов,но и для интенсификации различных химических реакций и для управления потоками газов с помощью электрических магнитных полей (см.6.1.1 и 6.7. 2.).
А.С.N 187894. Способ электродуговой сварки с непрерывной и импульсной моделей энергии,отличающийся тем,что с целью повышения точности выполнения сварного шва и облегчения зажигания дуги,ионизирующиедуговой промежуток.
А.С. N 444818: Способ нагрева стали в окислительной атмосфере, отличающийся тем,что с целью снижения обезуглеродивания, в процессе нагрева осуществляют ионизированные атмосферы.
А.С. 282684: Способ измерения малых потоков газа, выпускаемых в вакуумный объем,отличающийся тем,что с целью повышения точности измерения,газ перед запуском ионизируют и формируют в однородный полный пучек, а затем вводят ионный пучок в вакуумный объем,где его нейтрализуют на металлической мишени, и по току ионного пучка судят о величине газового потока.
11.2. Обычно газовй разряд поисходит между проводящими электродами создающими граничную конфигурацию электрического поля и играющими значительную роль в качестве источников и стоков заряженных частиц. Однако наличие электродов необязательно (высокочастотный тороидальный заряд).
11.3. При достаточно больших давлениях и длинах разрядного промежутка основную роль в возникновении и протекании разряда играет газовая среда. Поддержание разрядного тока определяется поддерживанием равновесной ионизации газа, происходящий при малых токах за счет гауноендовских процессов каскадной ионизации, а при больших токах за счет термической ионизации.
При уменьшении давления газа и длины разрядного промежутка все большую роль играют процессы на электродах; при P 0,02+0,4 мм.рт.ст/см процессы на электродах становятся определяющими.
11.4. При малых разрядных токах между холодными электродами и достаточно однородном поле основным типом разряда является тлеющий разряд, характеризующийся значительным (50 - 400 В) катодным падением потенциала. Катод в этом типе разряда испускает электроны под действием заряженных частиц и световых квантов, а тепловые явления не играют роли в поддерживани разряда.
Патент США 3 533 434: В устройстве, предназначенном для считывания информации с перфорированного носителя, используются лампы тлеющего разряда, имеющие невысокую стоимость, и, кроме того, обладающие высокой надежностью. Освещение ламп через перфорации носителя информации источником пульсирующего света вызывает зажигание некоторых из них, продолжающиеся и после исчезновения светового импульса. Таким образом лампы тлеющего разряда обеспечивают хранение информации и не требуют дополнительного запоминающего устройства.