Шрифт:
Вступление
Скорость развития науки в наше время поражает. Буквально в продолжении одной-двух человеческих жизней произошли гигантские изменения в физике, астрономии, биологии, да и во многих других областях. Читатели могут проследить сказанное даже на примере своей семьи. Так, мой отец, родившийся в 1863 году, был младшим современником Максвелла (1831–1879). Мне самому было уже 16 лет, когда в 1932 году открыли нейтрон и позитрон. А ведь до этого были известны только электрон, протон и фотон. Как-то нелегко — осознать, что электрон, рентгеновские лучи и радиоактивность открыты лишь около ста лет назад, а квантовая теория зародилась только в 1900 году. Вместе с тем сто лет — это так мало не только по сравнению с примерно 3 миллиардами лет с тех пор, как на Земле зародилась жизнь, но и с возрастом современного вида людей (Homo sapiens),
Можно рассчитывать на то, что в XXI веке наука будет развиваться не менее быстро, чем в ушедшем XX столетии. Вместе с тем физика так разрослась и дифференцировалась, что за деревьями трудно разглядеть лес, трудно охватить мысленным взором картину современной физики как целого. Между тем такая картина существует и, несмотря на все ответвления, у физики имеется стержень. Таким стержнем являются фундаментальные понятия и законы, сформулированные в теоретической физике.
Я пропагандирую «проект» (как сейчас стало модно говорить) так называемого «физического минимума». Речь идет о составлении некоторого списка проблем, представляющихся в данное время наиболее важными и интересными. Это темы, о которых каждый физик должен иметь некоторое представление, знать о чем идет речь. Быть может, менее тривиально мнение, что достичь подобной цели вовсе не так уж трудно, не так уж на это нужно потратить много времени и сил. Но для этого необходимы известные усилия не только со стороны «обучающихся», но и со стороны «старших товарищей».
«Особенно важные» проблемы выделяются не тем, что другие не важны, а тем, что на обсуждаемый период времени находятся в фокусе внимания, в какой-то мере находятся на главных направлениях. Завтра эти проблемы могут оказаться уже в тылу, на смену им придут другие. Подобные «списки», конечно, в известной мере субъективны. Я сейчас, в 2004 году, могу предложить такой.
Быть может, следовало бы сюда добавить «пункты» о квантовых компьютерах и некоторых проблемах оптики. Однако обращаю внимание читателя на субъективность и антидогматичность подобных «списков».
Список "особенно важных и интересных проблем"
Макрофизика
Управляемый ядерный синтез.
Высокотемпературная и комнатнотемпературная сверхпроводимость.
Металлический водород. Другие экзотические вещества.
Двумерная электронная жидкость (аномальный эффект Холла и некоторые другие эффекты).
Некоторые вопросы физики твердого тела (гетероструктуры в полупроводниках, переходы металл—диэлектрик, волны зарядовой и спиновой плотности, мезоскопика).
Фазовые переходы второго рода и родственные им. Некоторые примеры таких переходов. Охлаждение (в частности, лазерное) до сверхнизких температур. Бозе-эйнштейновская конденсация в газах.
Физика поверхности. Кластеры.
Жидкие кристаллы. Сегнетоэлектрики.
Фуллерены. Нанотрубки.
Поведение вещества в сверхсильных магнитных полях.
Нелинейная физика. Турбулентность. Солитоны. Хаос. Странные аттракторы.
Разеры, гразеры, сверхмощные лазеры.
Сверхтяжелые элементы. Экзотические ядра.
Микрофизика
Спектр масс. Кварки и глюоны. Квантовая хромодинамика. Кварк-глюонная плазма.
Единая теория слабого и электромагнитного взаимодействия. W —+ — и Z 0 — бозоны. Лептоны.
Стандартная модель. Великое объединение. Суперобъединение. Распад протона. Масса нейтрино. Магнитные монополи.
Фундаментальная длина. Взаимодействие частиц при высоких и сверхвысоких энергиях. Коллайдеры.
Несохранение СР-инвариантности.
Нелинейные явления в вакууме и в сверхсильных электромагнитных полях. Фазовые переходы в вакууме.
Струны. М-теория.
Астрофизика
Экспериментальная
Гравитационные волны, их детектирование.
Космологическая проблема. Инфляция. L-член. Связь между космологией и физикой высоких энергий.
Нейтронные звезды и пульсары. Сверхновые звезды.
Черные дыры. Космические струны(?).
Квазары и ядра галактик. Образование галактик.
Проблема темной материи (скрытой массы) и ее детектирования.
Происхождение космических лучей со сверхвысокой энергией.
Гамма-всплески. Гиперновые.
Нейтринная физика и астрономия. Нейтринные осцилляции.
Макрофизика
Проблема управляемого ядерного синтеза (номер 1 в «списке») все еще не решена, хотя ей уже более полувека. Я помню, как работа в этом направлении в СССР зародилась в 1950 году. Тогда А. Д. Сахаров и И. Е. Тамм рассказали мне об идее магнитного термоядерного реактора. Кстати сказать, я тогда и долгое время впоследствии думал, что интерес к «термояду» был в СССР обусловлен желанием создать неиссякаемый источник энергии. Однако, как мне уже в недавнее время рассказал И. Н. Головин, термоядерный реактор в те времена интересовал «кого надо» в основном вовсе по другой причине — как источник нейтронов (n) для производства трития (t). Уже в хрущевские времена И. В. Курчатов и его коллеги поняли, что проблему термояда быстро решить нельзя, и в 1956 году она была рассекречена. За границей работы над термоядом также начинались (примерно в тот же период) в основном как секретные, и их рассекречивание в СССР (совершенно нетривиальное для нашей страны по тем временам) сыграло большую положительную роль — обсуждение проблемы стало объектом международных конференций и сотрудничества. Но вот прошло почти 50 лет, а работающий (дающий энергию) термоядерный реактор еще не создан, и, вероятно, до этого момента придется ждать еще лет 15, а может быть, и больше. Особенно продвинута и является фаворитом система токамак. Несколько лет разрабатывался международный проект ITER (International Termonuclear Experimental Reactor). Этот гигантский токамак, стоимостью около 10 миллиардов долларов, предполагалось построить к 2005 году в качестве подлинного прообраза термоядерного реактора будущего. В 2004 году несколько более скромный проект (стоимость около 5 миллиардов долларов), видимо, будет наконец принят. В общем, сомнений в возможности создать реальный термоядерный реактор уже нет, и центр тяжести проблемы, насколько я понимаю, переместился в инженерную и экономическую области.
Что касается альтернативных путей синтеза легких ядер для получения энергии, то надежды на возможности «холодного термояда» оставлены, а мюонный катализ очень изящен, но представляется нереальным источником энергии, по крайней мере, без комбинации с делением урана. Существуют также проекты использования ускорителей с различными ухищрениями. Наконец, возможен инерционный ядерный синтез и, конкретно, «лазерный термояд».
Теперь о высокотемпературной и комнатнотемпературной сверхпроводимости (кратко ВТСП и КТСП, проблема 2). Долгие годы ВТСП было мечтой. Но в 1986–1987 гг. такие материалы созданы. Но механизм сверхпроводимости в различных классах веществ, например в купратах (наивысшая температура Т с =135 К достигнута для HgBa 2 Ca 2 Cu 3 O 8+x без давления; под довольно большим давлением для этого купрата уже Т с = 164 К), остается неясным. В общем, вопрос открыт, несмотря на огромные усилия, затраченные на изучение ВТСП (за 10 лет на эту тему появилось около 50 000 публикаций). Но главный вопрос в этой области, конечно тесно связанный с предыдущим, это возможность создания КТСП. Ничему такая возможность не противоречит, но и быть уверенным в успехе нельзя. Положение здесь вполне аналогично имевшему место до 1986–1987 гг. в отношении ВТСП.
Металлический водород (проблема 3) еще не создан даже под давлением около 3 миллионов атмосфер (речь идет о низкой температуре). Однако исследование молекулярного водорода под большим давлением выявило у этого вещества целый ряд неожиданных и интересных особенностей. Далее, при сжатии ударными волнами и температуре около 3000 К обнаружен, по-видимому, переход в металлическую (т. е. хорошо проводящую) жидкую фазу. При высоком давлении обнаружены также своеобразные особенности у воды (точнее, Н 2 О) и ряда других веществ. Помимо металлического водорода к числу «экзотических» веществ можно отнести фуллерены. Совсем недавно, кроме «обычного» фуллерена С 60, начал исследоваться фуллерен С 36, быть может обладающий при добавлении примесей очень высокой температурой сверхпроводящего перехода.