Физика для всех. Движение. Теплота
Шрифт:
Пусть колеблется источник звука. Он излучает звуковую энергию в окружающий воздух. Энергия как бы «течет» от звучащего тела. Через каждую площадку, расположенную перпендикулярно к линии распространения звука, за секунду протекает определенное количество энергии. Эта величина называется потоком энергии, прошедшим через площадку. Если, кроме того, взята площадка в 1 см 2, то протекшее количество энергии называют интенсивностью звуковой волны.
Нетрудно видеть, что интенсивность звука Iравна произведению плотности энергии wна скорость звука с. Представим цилиндрик
При громком разговоре интенсивность звука вблизи собеседников будет примерно равна (мы воспользуемся числом, полученным выше) 2·10 – 7·3·10 4= 0,006 эрг/(см 2·с).
Ослабление звука с расстоянием
От звучащего инструмента звуковая волна распространяется, конечно, во все стороны.
Проведем мысленно около источника звука две сферы разных радиусов. Разумеется, энергия звука, проходящая через первую сферу, пройдет и через вторую шаровую поверхность. Если обозначить интенсивность звука через I, то энергию волны, проходящей через сферу, можно записать так: I·4 r 2, так как 4 r 2– это площадь поверхности сферы радиуса r. Если энергия не потерялась по пути от первой сферы ко второй, то I 1·4 r 1 2= I 2·4 r 2 2. Значит, интенсивности I 2и I 2волны на расстояниях r 1и r 2от источника звука относятся друг к другу обратно пропорционально квадратам расстояний. Так как интенсивность звука пропорциональна плотности энергии, то интенсивность, как и плотность энергии, пропорциональна квадрату амплитуды колебания. Отсюда следует, что амплитуды волны на расстояниях r 1и r 2от источника звука относятся друг к другу обратно пропорционально расстоянию. Интенсивность звука убывает обратно пропорционально квадрату расстояния от источника, а амплитуда обратно пропорциональна расстоянию в первой степени. На самом же деле звук убывает несколько быстрее, так как часть энергии поглощается по пути. Это происходит из-за того, что при колебании частиц среды некоторая часть энергии будет затрачена на преодоление вязкого трения. Однако эти потери относительно невелики, и главная причина того, что на далеком расстоянии мы слышим хуже, чем на близком, – это закон обратных квадратов.
Громко и тихо
Органы чувств человека во многих отношениях совершеннее самых лучших приборов. Это справедливо и для слуха. Мы способны воспринимать в виде звука волны с интенсивностью от 10 – 9эрг/(см 2·с) до 10 4этих единиц интенсивности. Таким образом, сильнейший звук отличается от слабейшего в десять триллионов раз.
Что же представляет собой тишайший звук, который человек способен воспринять? Чуть слышный шорох создает на барабанной перепонке давление, равное 2·10 – 4дин/см 2, т.е. примерно двум десятимиллионным долям грамма. Лучшие микровесы не обладают такой чувствительностью, как ухо человека.
Если звук несет энергию больше 10 4эрг/(см 2·с), то человек уже не слышит звука, но испытывает болевое ощущение. Давление на барабанную перепонку достигает при этом 0,2 Г/см 2.
Энергия волны, несущей сильный звук, в огромное число раз больше энергии волны, приносящей нам шепот и шорохи. Поэтому оценивать громкость звука величиной энергии практически очень неудобно. Представьте себе, что сотруднику, изыскивающему средства для борьбы с уличным шумом, надо сделать доклад на сессии Городского Совета и рассказать, насколько уменьшится шум, если заменить трамвайное движение троллейбусным или автобусным, если запретить подачу автоводителями сигналов на улице и т.д. Чтобы картина была наглядной, надо прибегнуть к плакатам. Как это принято при построении различного рода диаграмм, можно нарисовать на плакате столбики, высоты которых будут изображать степень шума. Но если определять громкость звука величиной энергии, то возникает непреодолимая трудность: тишина и шум отличаются друг от друга столь значительно, что изобразить их на одной диаграмме в одном масштабе гораздо труднее, чем нарисовать на одном плакате слона и муху в натуральную величину.
В подобных случаях в физике прибегают к так называемому логарифмическому масштабу.
Если какая-либо величина возрастает в 10, 100, 1000 и т.д. раз, то ее логарифм увеличивается на 1, на 2, на 3 и т.д. Значит, пользуясь не энергией звуковой волны, а логарифмами этой величины, всегда можно «уместить» на одном плакате шум авиационного мотора и жужжание комара.
Шкалу громкости создают следующим путем. Условно выбирают некоторый нулевой уровень громкости, равный 10 – 9эрг/(см 2·с). Звуков такой силы не слышит человек даже с самым изощренным слухом. Далее определяют, во сколько раз энергия интересующего нас звука Eбольше величины этого начального уровня E 0, т.е. находят отношение E/ E 0.
Десятичный логарифм этого отношения и принят за меру громкости звука. Единица громкости носит название бел; впрочем обычно пользуются десятой долей, называвмой децибелом (дБ). Громкость в децибелах = 10 lg( E/ E 0).
О том, что такое децибел, можно судить по следующей таблице, указывающей величины громкости различных звуков на расстоянии в несколько метров от источника звука:
Шелест листьев | 10 децибел |
Тихая улица | 30 ~ |
Проезжающая автомашина | 50 ~ |
Громкий разговор | 70 ~ |
Шумная улица | 90 ~ |
Самолет | 100 ~ |
Таблица логарифмов позволит нам ясно представить децибел. Так, увеличение силы звука на 1 дБ соответствует возрастанию интенсивности звука в 10 0,1= 1,26 раза, т.е. на 26 %. Увеличение интенсивности звука в два раза соответствует изменению громкости на 3 дБ, в пять раз – на 7 дБ, в десять раз – на 10 дБ.
Если расстояние от источника звука увеличится в два раза, то интенсивность звука упадет в четыре раза и сила звука упадет на 6 дБ. Предположим, мы находились на расстоянии метра от звучащей струны и отошли на расстояние в 10 м. Интенсивность волны, добирающейся до уха, упадет в 100 раз, а сила звука уменьшится на 20 дБ.
Ранее мы говорили об ограниченности диапазона слышимых частот. Дополнив эти сведения нашими знаниями о чувствительности уха к тихому и громкому звуку, можно изобразить ее диаграммой слышимости, типичной для нормального человека (рис. 121). По горизонтальной оси этого графика отложена частота звука, по вертикальной оси – энергия звука. На рисунке показаны порог слышимости и порог болевого ощущения. Область слуха лежит внутри области слышимости.